Abstract:
This invention provides expressible polynucleotides, which can express a target protein or polypeptide. Synthetic mRNA constructs for producing a protein or polypeptide can contain one or more 5′ UTRs, where a 5′ UTR may be expressed by a gene of a plant. In some embodiments, a 5′ UTR may be expressed by a gene of a member of Arabidopsis genus. The synthetic mRNA constructs can be used as pharmaceutical agents for expressing a target protein or polypeptide in vivo.
Abstract:
This invention provides expressible polynucleotides, which can express a target protein or polypeptide. Synthetic mRNA constructs for producing a protein or polypeptide can contain one or more 5′ UTRs, where a 5′ UTR may be expressed by a gene of a plant. In some embodiments, a 5′ UTR may be expressed by a gene of a member of Arabidopsis genus. The synthetic mRNA constructs can be used as pharmaceutical agents for expressing a target protein or polypeptide in vivo.
Abstract:
The present disclosure describes compositions and methods for treating ornithine transcarbamylase (OTC) deficiency. The compositions include a lipid formulation and messenger RNA (mRNA) encoding an OTC enzyme. The lipid formulations can comprise an ionizable cationic lipid in a lipid nanoparticle encapsulating the mRNA.
Abstract:
This invention encompasses compounds and compositions useful in methods for medical therapy, in general, for inhibiting Hepatitis B virus in a subject. The compounds have a first strand and a second strand, each of the strands being 19-29 monomers in length, the monomers comprising UNA monomers and nucleic acid monomers, and the compounds are targeted to a sequence of an HBV genome.
Abstract:
This invention provides expressible polynucleotides, which can express a target protein or polypeptide. Synthetic mRNA constructs for producing a protein or polypeptide can contain one or more 5′ UTRs, where a 5′ UTR may be expressed by a gene of a plant. In some embodiments, a 5′ UTR may be expressed by a gene of a member of Arabidopsis genus. The synthetic mRNA constructs can be used as pharmaceutical agents for expressing a target protein or polypeptide in vivo.
Abstract:
This invention encompasses compounds and compositions useful in methods for medical therapy, in general, for inhibiting Hepatitis B virus in a subject. The compounds have a first strand and a second strand, each of the strands being 19-29 monomers in length, the monomers comprising UNA monomers and nucleic acid monomers, and the compounds are targeted to a sequence of an HBV genome.
Abstract:
The present disclosure describes compositions and methods for treating ornithine transcarbamylase (OTC) deficiency. The compositions include a lipid formulation and messenger RNA (mRNA) encoding an OTC enzyme. The lipid formulations can comprise an ionizable cationic lipid in a lipid nanoparticle encapsulating the mRNA.
Abstract:
This invention encompasses compounds and compositions useful in methods for medical therapy, in general, for inhibiting Hepatitis B virus in a subject. The compounds have a first strand and a second strand, each of the strands being 19-29 monomers in length, the monomers comprising UNA monomers and nucleic acid monomers, and the compounds are targeted to a sequence of an HBV genome.
Abstract:
This invention encompasses compounds and compositions useful in methods for medical therapy, in general, for inhibiting Hepatitis B virus in a subject. The compounds have a first strand and a second strand, each of the strands being 19-29 monomers in length, the monomers comprising UNA monomers and nucleic acid monomers, and the compounds are targeted to a sequence of an HBV genome.
Abstract:
A range of therapeutic mRNA molecules expressible to provide a target polypeptide or protein. The RNA molecules can contain one or more 5-methoxyuridines and 5-methylcytidines. Further provided are DNA templates, which can be transcribed to provide a target mRNA, and can have altered nucleotides, such as reduced deoxyadenosines. Also provided are processes for making the therapeutic mRNA molecules. The RNA molecules can be translated in vitro or in vivo to provide an active polypeptide or protein. The RNA molecules can be included in a composition used for preventing, treating, or ameliorating at least one symptom of a disease or condition in a subject in need thereof.