Abstract:
A system for providing an acoustic environment recognizer for optimal speech processing is disclosed. In particular, the system may utilize metadata obtained from various acoustic environments to assist in suppressing ambient noise interfering with a desired audio signal. In order to do so, the system may receive an audio stream including an audio signal associated with a user and including ambient noise obtained from an acoustic environment of the user. The system may obtain first metadata associated with the ambient noise, and may determine if the first metadata corresponds to second metadata in a profile for the acoustic environment. If the first metadata corresponds to the second metadata, the system may select a processing scheme for suppressing the ambient noise from the audio stream, and process the audio stream using the processing scheme. Once the audio stream is processed, the system may provide the audio stream to a destination.
Abstract:
A method and system for managing an instrumentation device include accessing an image of the instrumentation device. Based on the image, an identity for the instrumentation device is determined. The identity is used to register the instrumentation device by configuring a gateway at a multimedia content distribution network client location to access and communicate with the instrumentation device. The identity of the instrumentation device and the gateway may be stored for future configuration of the gateway.
Abstract:
A system for providing an acoustic environment recognizer for optimal speech processing is disclosed. In particular, the system may utilize metadata obtained from various acoustic environments to assist in suppressing ambient noise interfering with a desired audio signal. In order to do so, the system may receive an audio stream including an audio signal associated with a user and including ambient noise obtained from an acoustic environment of the user. The system may obtain first metadata associated with the ambient noise, and may determine if the first metadata corresponds to second metadata in a profile for the acoustic environment. If the first metadata corresponds to the second metadata, the system may select a processing scheme for suppressing the ambient noise from the audio stream, and process the audio stream using the processing scheme. Once the audio stream is processed, the system may provide the audio stream to a destination.
Abstract:
A method and system for managing an instrumentation device include accessing an image of the instrumentation device. Based on the image, an identity for the instrumentation device is determined. The identity is used to register the instrumentation device by configuring a gateway at a multimedia content distribution network client location to access and communicate with the instrumentation device. The identity of the instrumentation device and the gateway may be stored for future configuration of the gateway.
Abstract:
A pre-distortion system for improved mobile device communications via cancellation of nonlinear distortion is disclosed. The pre-distortion system may transmit an acoustic signal from a network to a device, wherein the acoustic signal includes a linear signal and a nonlinear cancellation signal that cancels at least a portion of nonlinear distortions created once a loudspeaker in the device emits the linear signal. Thus, when a loudspeaker of a mobile device is operating and nonlinear distortions are generated by the loudspeaker or adjacent components of the mobile device in close proximity to the loudspeaker, the pre-distortion system may create one or more nonlinear cancellation signals in the network. The nonlinear cancellation signal may be combined with the linear signal sent to the loudspeaker to cancel the nonlinear distortion signal created by the loudspeaker emitting acoustic sounds from the linear signal. Thus, the nonlinear cancellation signal becomes a pre-distortion signal.
Abstract:
A system for providing an acoustic environment recognizer for optimal speech processing is disclosed. In particular, the system may utilize metadata obtained from various acoustic environments to assist in suppressing ambient noise interfering with a desired audio signal. In order to do so, the system may receive an audio stream including an audio signal associated with a user and including ambient noise obtained from an acoustic environment of the user. The system may obtain first metadata associated with the ambient noise, and may determine if the first metadata corresponds to second metadata in a profile for the acoustic environment. If the first metadata corresponds to the second metadata, the system may select a processing scheme for suppressing the ambient noise from the audio stream, and process the audio stream using the processing scheme. Once the audio stream is processed, the system may provide the audio stream to a destination.
Abstract:
A system for cloud acoustic enhancement is disclosed. In particular, the system may leverage metadata and cloud-computing network resources to mitigate the impact of noisy environments that may potentially interfere with user communications. In order to do so, the system may receive an audio stream including an audio signal associated with a user, and determine if the audio stream also includes an interference signal. The system may determine that the audio stream includes the interference signal if a portion of the audio stream correlates with metadata that identifies the interference signal. If the audio stream is determined to include the interference signal, the system may cancel the interference signal from the audio stream by utilizing the metadata and the cloud-computing network resources. Once the interference signal is cancelled, the system may transmit the audio stream including the audio signal associated with the user to an intended destination.
Abstract:
A pre-distortion system for improved mobile device communications via cancellation of nonlinear distortion is disclosed. The pre-distortion system may transmit an acoustic signal from a network to a device, wherein the acoustic signal includes a linear signal and a nonlinear cancellation signal that cancels at least a portion of nonlinear distortions created once a loudspeaker in the device emits the linear signal. Thus, when a loudspeaker of a mobile device is operating and nonlinear distortions are generated by the loudspeaker or adjacent components of the mobile device in close proximity to the loudspeaker, the pre-distortion system may create one or more nonlinear cancellation signals in the network. The nonlinear cancellation signal may be combined with the linear signal sent to the loudspeaker to cancel the nonlinear distortion signal created by the loudspeaker emitting acoustic sounds from the linear signal. Thus, the nonlinear cancellation signal becomes a pre-distortion signal.
Abstract:
A system for exploiting visual information for enhancing audio signals via source separation and beamforming is disclosed. The system may obtain visual content associated with an environment of a user, and may extract, from the visual content, metadata associated with the environment. The system may determine a location of the user based on the extracted metadata. Additionally, the system may load, based on the location, an audio profile corresponding to the location of the user. The system may also load a user profile of the user that includes audio data associated with the user. Furthermore, the system may cancel, based on the audio profile and user profile, noise from the environment of the user. Moreover, the system may include adjusting, based on the audio profile and user profile, an audio signal generated by the user so as to enhance the audio signal during a communications session of the user.
Abstract:
A system for self-organized acoustic signal cancellation over a network is disclosed. The system may transmit an acoustic sounding signal to an interfering device so that a channel measurement may be performed for a channel between the interfering device and an interferee device. The system may receive the channel measurement for the channel from the interfering device and also receive a digitized version of an audio interference signal associated with the interfering device. Based on the channel measurement and the digital version of the interference signal, the system may calculate a cancellation signal prior to the arrival of the original over-the-air audio interference signal that corresponds to the digital version of audio interference signal. The system may then apply the cancellation signal to an audio signal associated with the interferee device to remove the interference signal from the audio signal.