Abstract:
Methods and systems may use a software-defined network (SDN) based approach for interworking different types of nodes. In an example, an SDN controller may include components that assist in building pseudowires across Ethernet virtual private network (EVPN) nodes and Border gateway protocol-virtual private local area network (LAN) service (BGP-VPLS) nodes.
Abstract:
Concepts and technologies are disclosed herein for management of forwarding tables at edge routers. A processor that executes a software defined networking controller can select an edge router associated with a networking environment. The edge router can access or use a forwarding table. The processor can obtain routing information associated with the edge router. The routing information can include forwarding table contents associated with the forwarding table and next hop information that can indicate communication paths associated with the edge router. The processor can analyze the routing information to determine next hops associated with the edge router, generate a next hop graph that represents the next hops, and initiate updating of the forwarding table such that forwarding table only includes data that corresponds to the next hops.
Abstract:
An inter-provider network architecture system is disclosed. In particular, the system may enable a service provider network and a partner network to take advantage of each other's network cores, such that the resources of the service provider network and the partner network may be more effectively utilized to service customers of both networks. By doing so, not only can the service provider network and the partner network take advantage of each other's network resources, but they can also give each other's customers broader network reach into regions that are not typically serviced by their own networks. The service provider network may effectively accomplish this by providing a limited view of the service provider network to the partner network, or vice versa, so that traffic and data can flow between the networks without each network having to be fully aware of each other's entire network topologies.
Abstract:
Aspects of the subject disclosure may include, for example, specification of network service functions (e.g., a firewall or network address translation appliance) to be included in a service function path. Routers in a communication network may publish information regarding reachable network service functions and an API may be exposed that provides the information regarding the reachable network service functions. Other embodiments are disclosed.
Abstract:
Routes are reflected from a virtual route reflector. For instance, topology information and external route information are requested by a virtual route reflector remote from an autonomous system. The external route information identifies border routers through which a remote destination can be reached. Using the topology information, a first path can be selected from among paths emanating from a selected node in the autonomous system, the paths exiting the autonomous system at respective border routers of the border routers. Further, a route to the remote destination can be advertised from the virtual route reflector to a client router in the autonomous system, the route including a first border router at which the first path exits the autonomous system.
Abstract:
A mechanism is created within the tunnel context, in which a plurality of tunnels may resolve a given customer's traffic associated with a virtual local area network. The use of a tunnel context may allow distribution of traffic across multiple servers and other devices, such as across top of rack switches and different parts of the fabric infrastructure.
Abstract:
Methods and systems associated with fabric tunnels may assist in traffic flow through a tunnel that aggregates a plurality of virtual local area networks across a core network.
Abstract:
Methods, apparatus, systems and articles of manufacture to reflect routes from a virtual route reflector are disclosed. An example method includes requesting, at a virtual route reflector remote from an autonomous system, topology information and external route information from the autonomous system. The external route information identifies a plurality of border routers through which a remote destination can be reached. The example method also includes selecting, using the topology information, a first path from among a plurality of paths emanating from a selected node in the autonomous system, the plurality of paths exiting the autonomous system at respective border routers of the plurality of border routers. The example method further includes advertising, from the virtual route reflector to a client router in the autonomous system, a route to the remote destination, the route including a first border router at which the first path exits the autonomous system.
Abstract:
Methods, apparatus, systems and articles of manufacture to reflect routes from a virtual route reflector are disclosed. An example method includes requesting, at a virtual route reflector remote from an autonomous system, topology information and external route information from the autonomous system. The external route information identifies a plurality of border routers through which a remote destination can be reached. The example method also includes selecting, using the topology information, a first path from among a plurality of paths emanating from a selected node in the autonomous system, the plurality of paths exiting the autonomous system at respective border routers of the plurality of border routers. The example method further includes advertising, from the virtual route reflector to a client router in the autonomous system, a route to the remote destination, the route including a first border router at which the first path exits the autonomous system.
Abstract:
An inter-provider network architecture system is disclosed. In particular, the system may enable a service provider network and a partner network to take advantage of each other's network cores, such that the resources of the service provider network and the partner network may be more effectively utilized to service customers of both networks. By doing so, not only can the service provider network and the partner network take advantage of each other's network resources, but they can also give each other's customers broader network reach into regions that are not typically serviced by their own networks. The service provider network may effectively accomplish this by providing a limited view of the service provider network to the partner network, or vice versa, so that traffic and data can flow between the networks without each network having to be fully aware of each other's entire network topologies.