Abstract:
Audio processing is provided to determine whether an audio issue is present within a multi-participant communication system such as a teleconference or videoconference bridge or a trunk dispatch system. Audio issues such as background noise, background conversations, or other unwanted audio that is being interjected into the multi-participant conversation and that may be dominating the audio are detected by measuring characteristics of audio samples taken from the communication ports of the multi-participant communication system. A correction may then be applied to the audio received through the communication port by a processor of the multi-participant communication system without intervention by an administrator, such as by muting the port, applying a noise cancellation to audio from the port, or time-shifting the audio from the port.
Abstract:
Methods and apparatus are disclosed to apply permissions to applications. A disclosed example apparatus includes an address trust manager to obtain a first network address having a request for address authentication from a first entity, the first network address having a second network address associated with a second entity to execute the application, an address associator to compare the first network address to a trusted address database to determine whether the first network address is trusted, and a shadow environment communicator to generate a signed message based on the comparison of the trusted address database, the address trust manager to transmit the signed message to the second entity with an indication of authorization via the first network address in response to a match in the trusted address database, and transmit the signed message to the second entity with an indication of non-authorization via the first network address in response to a lack of a match in the trusted address database.
Abstract:
Methods, systems, and devices are disclosed for producing and delivering packetized power within a DC computing environment. Within the DC computing environment a power requirement or request is communicated to a power router. The power router then determines a power source capable of fulfilling the power requirement and then causes the power to be delivered in packetized form. The packetized power is appended to a message header which allows the power packet to be received by the requesting device.
Abstract:
Gestures may be performed to control a visual projector. When a device or human hand is placed into a projection field of the visual projector, the visual projector responds to gestures. The human hand, for example, may gesture to rotate a projected image or to correct the projected image. The visual projector may thus manipulate and/or correct the projected image in response to the gesture.
Abstract:
Concepts and technologies for optical environmental filtering with intrusion protection are provided. In an embodiment, a system can include a first intrusion detection frame structure, a second intrusion detection frame structure, a controller unit, and a laser filter frame structure that is disposed between the first intrusion detection frame structure and the second intrusion detection frame structure. The laser filter frame structure can include at least one laser emitter that projects at least one laser beam that forms a laser emission plane between the first light intrusion plane and the second light intrusion plane. The controller unit can activate at least one laser emitter, and in response to detecting an object passing through the first light intrusion plane, deactivate a laser emitter to pause creation of the laser emission plane. The controller can reactivate a laser emitter before the object passes through the second light intrusion plane.
Abstract:
Audio processing is provided to determine whether an audio issue is present within a multi-participant communication system such as a teleconference or videoconference bridge or a trunk dispatch system. Audio issues such as background noise, background conversations, or other unwanted audio that is being interjected into the multi-participant conversation and that may be dominating the audio are detected by measuring characteristics of audio samples taken from the communication ports of the multi-participant communication system. A correction may then be applied to the audio received through the communication port by a processor of the multi-participant communication system without intervention by an administrator, such as by muting the port, applying a noise cancellation to audio from the port, or time-shifting the audio from the port.
Abstract:
Gestures may be performed to control a visual projector. When a device or human hand is placed into a projection field of the visual projector, the visual projector responds to gestures. The human hand, for example, may gesture to rotate a projected image or to correct the projected image. The visual projector may thus manipulate and/or correct the projected image in response to the gesture.
Abstract:
Audio processing is provided to determine whether an audio issue is present within a multi-participant communication system such as a teleconference or videoconference bridge or a trunk dispatch system. Audio issues such as background noise, background conversations, or other unwanted audio that is being interjected into the multi-participant conversation and that may be dominating the audio are detected by measuring characteristics of audio samples taken from the communication ports of the multi-participant communication system. A correction may then be applied to the audio received through the communication port by a processor of the multi-participant communication system without intervention by an administrator, such as by muting the port, applying a noise cancellation to audio from the port, or time-shifting the audio from the port.
Abstract:
Audio processing is provided to determine whether an audio issue is present within a multi-participant communication system such as a teleconference or videoconference bridge or a trunk dispatch system. Audio issues such as background noise, background conversations, or other unwanted audio that is being interjected into the multi-participant conversation and that may be dominating the audio are detected by measuring characteristics of audio samples taken from the communication ports of the multi-participant communication system. A correction may then be applied to the audio received through the communication port by a processor of the multi-participant communication system without intervention by an administrator, such as by muting the port, applying a noise cancellation to audio from the port, or time-shifting the audio from the port.
Abstract:
Methods, systems, and devices are disclosed for producing and delivering packetized power within a DC computing environment. Within the DC computing environment a power requirement or request is communicated to a power router. The power router then determines a power source capable of fulfilling the power requirement and then causes the power to be delivered in packetized form. The packetized power is appended to a message header which allows the power packet to be received by the requesting device.