Abstract:
A method includes receiving, at a model and optimization framework, a request, rendered in a first format, for a service to be implemented on a subset of a software-defined network. The request includes at least one constraint affecting implementation of the service. The method includes producing an optimized solution, rendered in a second format, for implementing the service based on the at least one constraint. The method includes translating the optimized solution to the first format and providing instructions for a cloud manager to implement the service consistent with the translated optimized solution.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.
Abstract:
A method includes receiving, at a model and optimization framework, a request, rendered in a first format, for a service to be implemented on a subset of a software-defined network. The request includes at least one constraint affecting implementation of the service. The method includes producing an optimized solution, rendered in a second format, for implementing the service based on the at least one constraint. The method includes translating the optimized solution to the first format and providing instructions for a cloud manager to implement the service consistent with the translated optimized solution.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.
Abstract:
A method includes receiving, at a model and optimization framework, a request, rendered in a first format, for a service to be implemented on a subset of a software-defined network. The request includes at least one constraint affecting implementation of the service. The method includes producing an optimized solution, rendered in a second format, for implementing the service based on the at least one constraint. The method includes translating the optimized solution to the first format and providing instructions for a cloud manager to implement the service consistent with the translated optimized solution.
Abstract:
A method includes receiving, at a model and optimization framework, a request, rendered in a first format, for a service to be implemented on a subset of a software-defined network. The request includes at least one constraint affecting implementation of the service. The method includes producing an optimized solution, rendered in a second format, for implementing the service based on the at least one constraint. The method includes translating the optimized solution to the first format and providing instructions for a cloud manager to implement the service consistent with the translated optimized solution.
Abstract:
A method, computer-readable storage device and apparatus for routing traffic in a reconfigurable optical add-drop multiplexer layer of a dense wavelength division multiplexing network are disclosed. For example, the method determines the reconfigurable optical add-drop multiplexer layer has asymmetric traffic, and routes the asymmetric traffic in the reconfigurable optical add-drop multiplexer layer over a plurality of asymmetrical optical connections, wherein the plurality of asymmetrical optical connections is provided with only uni-directional equipment in the reconfigurable optical add-drop multiplexer layer.