Abstract:
A display apparatus including a display panel and a plurality of common voltage generators is provided. The display panel has a plurality of pixel regions. The plurality of common voltage generators are coupled to the plurality of pixel regions respectively and generate a plurality of common voltages, wherein each of the plurality of common voltage generators respectively maintains each of the plurality of common voltages at a first voltage, a second voltage, and a third voltage in a plurality of first timing periods in a first polarity period and respectively maintains each of the plurality of common voltages at a fifth voltage, a fourth voltage, and the third voltage in a plurality of second timing periods in a second polarity period in a narrow view mode, wherein the first voltage>the second voltage>the third voltage>the fourth voltage>the fifth voltage.
Abstract:
A display driving method includes: performing a display scan function and a display stop function during a plurality of frame periods; during one frame period, outputting, alternately and sequentially along a scan direction, N scan signals according to K clock signals when performing the display scan function, wherein each of the scan signals has an enable period of a scan line, the clock signals sequentially have a delay, and each of the clock signals is a periodic signal with K delays as one period; providing a driving control signal and disabling the clock signals when performing the display stop function during a display stop period, wherein an initiation time position of the display stop period is changed based on an offset between two neighboring frame periods, and the neighboring frame periods have no overlapping or interlacing interval.
Abstract:
A display panel having a display area and a gate driving area includes a gate line and plural pixel units in the display area, and a gate driver circuit in the gate driving area. The gate line connects to the pixel units. The gate driver circuit connects to the gate line. The gate driver includes a driving transistor and a driving storage capacitor stacked to each other to form a stack structure, which includes a first electrode, a first dielectric layer, a second electrode, a second dielectric layer, a first semiconductor layer, a drain electrode, and a source electrode, which is connected to the gate line. The driving storage capacitor is formed by the first electrode, the first dielectric layer, and the second electrode. The driving transistor is formed by the second electrode, the second dielectric layer, the first semiconductor layer, the source electrode, and the drain electrode.
Abstract:
A pixel circuit and a display device are provided. The pixel circuit is utilized for driving a light emitting diode. The pixel circuit includes a storage capacitor, a selector, a memory device, and a write switch. The storage capacitor is coupled to the light emitting diode. The selector selects a first signal or a second signal to the storage capacitor according to a stored data. The memory device is coupled to the selector. The memory device stores a written data to obtain the stored data. The write switch is coupled to the memory device. The write switch writes in the written data to the memory device while the pixel circuit is in transition of operation modes.
Abstract:
A display device includes a plurality of scan lines, a plurality of data lines, a plurality of pixel units, a plurality of gate driving circuits, and a plurality of connection lines. The scan lines extend in a first direction. The data lines extend in a second direction. The gate driving circuits extend in the first direction, and each of the gate driving circuits crosses through at least two of the pixel units. At least two gate driving circuits are included between two adjacent rows of the pixel units. The connection lines extend in the second direction and are electrically connected to the gate driving circuits. At least part of the connection lines overlap the data lines. The connection lines include a plurality of output lines and a plurality of signal lines. The output lines are electrically connected to the scan lines.
Abstract:
A stereo display device includes a display panel and a parallax barrier panel. The display panel includes a pixel array having pixel units, each of which includes sub-pixels. The parallax barrier panel at one side of the display panel includes a first substrate, first electrodes, second electrodes, a second substrate, third electrodes, fourth electrodes, and a birefringence medium. The first and second electrodes are arranged on the first substrate alternately; an extension direction of the first and second electrodes is parallel to the X-direction. The third and fourth electrodes are arranged on the second substrate alternately; an extension direction of the third and fourth electrodes is not parallel to the X-direction; an included angle between the extension direction of the third and fourth electrodes and the Y-direction is substantially greater than 0° and smaller than 45°. The birefringence medium is disposed between the first and second substrates.
Abstract:
A touch display apparatus is disclosed herein. The touch display apparatus has a timing controller outputting external signals; a touch driver for outputting touch driving signals according to the touch-enable signal; a scan driver having a multi-stage shift registers outputting scan signals, each shift register having a driving unit electrically connected to a driving node, outputting a first scan signal to an output end according to a clock signal; a pull-up unit outputting a driving voltage to the driving node according to a second scan signal; a pull-down control unit controlling a voltage level of the driving node according to the clock signal; a discharging unit adjusting the voltage level of the driving node according to a first control signal and the first scan signal, wherein the clock signal and the first control signal are in-phase periodic signals and respectively have a rising edge and a falling edge, the falling edge of the first control signal is ahead of that of the clock signal; and a pull-down unit electrically connected to the output end adjusting the voltage level of the output end, wherein the first control signal and the second control signal are complementary periodic signals.
Abstract:
A shift register circuit includes a driving unit outputting a first scan signal according to a first clock signal; a pull up unit outputting a driving voltage according to one of a second scan signal and a third scan signal; a pull down unit pulling down voltage of an output end according to a second clock signal; a pull down control unit controlling the voltage of the output end and a driving node according to the first clock signal; a reset unit pulling down the voltage level of the driving node according to a touch-enable signal; and an electric storage unit adjusting the voltage of the driving node according to a touch-stop signal. When the touch-enable signal is enabled, the clock signals and the touch-stop signal are disabled, and when the touch-stop signal is enabled, the clock signals and the touch-enable signal are disabled.
Abstract:
A gate driving circuit includes a plurality of shift registers coupled in series. An nth shift register includes a driving circuit and a pull-down circuit. The driving circuit is electrically coupled to an output node and a first node. The driving circuit is configured to receive a first clock signal and output a gate signal according to the first clock signal. The pull-down circuit is electrically coupled to the output node. The pull-down circuit is configured to receive an (n−m)th gate signal and an (n+m)th gate signal, and pull-down the gate signal to a low voltage level according to one of the (n−m)th gate signal and the (n+m)th gate signal, wherein m and n are positive integers.
Abstract:
A pixel circuit and a display device are provided. The pixel circuit is utilized for driving a light emitting diode. The pixel circuit includes a storage capacitor, a selector, a memory device, and a write switch. The storage capacitor is coupled to the light emitting diode. The selector selects a first signal or a second signal to the storage capacitor according to a stored data. The memory device is coupled to the selector. The memory device stores a written data to obtain the stored data. The write switch is coupled to the memory device. The write switch writes in the written data to the memory device while the pixel circuit is in transition of operation modes.