Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining portions of an item that would be unsupported during three-dimensional printing. One of the methods includes obtaining data representing a three-dimensional model of an item to be created by a three-dimensional printer, processing data representing discrete portions of an upper layer of the three-dimensional model that are labelled as unsupported to place supports for at least some of the discrete portions that are labelled as unsupported, processing data representing any remaining discrete portions of the upper layer that are labelled as unsupported and for which a support for the remaining discrete portion would intersect with a lower portion in the three-dimensional model, generating, for each of the discrete portions labelled as a portion at which to generate a support, a support for the discrete portion in the three-dimensional model.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining portions of an item that would be unsupported during three-dimensional printing. One of the methods includes obtaining data representing a three-dimensional model of an item to be created by a three-dimensional printer, processing data representing discrete portions of an upper layer of the three-dimensional model that are labelled as unsupported to place supports for at least some of the discrete portions that are labelled as unsupported, processing data representing any remaining discrete portions of the upper layer that are labelled as unsupported and for which a support for the remaining discrete portion would intersect with a lower portion in the three-dimensional model, generating, for each of the discrete portions labelled as a portion at which to generate a support, a support for the discrete portion in the three-dimensional model.
Abstract:
A method, system, and computer program product/computer readable storage medium provide the ability to render a shadow. A three-dimensional (3D) scene comprising an object is obtained. An external physical light source that is external to the 3D scene is detected by a sensor. An artificial light source is created in the 3D scene that corresponds to the external physical light source. Based on the artificial light source, a shadow of the object is cast. The 3D scene including the object and the shadow are then rendered.
Abstract:
A method, system, and computer program product/computer readable storage medium provide the ability to render a shadow. A three-dimensional (3D) scene comprising an object is obtained. An external physical light source that is external to the 3D scene is detected by a sensor. An artificial light source is created in the 3D scene that corresponds to the external physical light source. Based on the artificial light source, a shadow of the object is cast. The 3D scene including the object and the shadow are then rendered.
Abstract:
A method, apparatus, system, article of manufacture, and computer program product provide the ability to create a pipe route. A point cloud is obtained into a three-dimensional (3D) modeling application. Cylinders in the point cloud are identified and added as solids overlaying the point cloud. All cylinders that make up the pipe route are identified by system aided selection of two or more of the solids. Automatically, and without additional user input, the selected solids are converted into objects. A continuous pipe route is constructed from the objects.