Adaptive targeting for finding look-alike users
    1.
    发明授权
    Adaptive targeting for finding look-alike users 有权
    适应性定位,以寻找类似的用户

    公开(公告)号:US09087332B2

    公开(公告)日:2015-07-21

    申请号:US12871775

    申请日:2010-08-30

    IPC分类号: G06Q30/00 G06Q30/02

    摘要: A method for adaptive display of internet advertisements to look-alike users using a desired user profile dataset as a seed to machine learning modules. Upon availability of a desired user profile, that user profile is mapped other look-alike users (from a larger database of users). The method proceeds to normalize the desired user profile object, proceeds to normalize known user profile objects, then seeding a machine-learning training model with the normalized desired user profile object. A scoring engine uses the normalized user profiles for matching based on extracted features (i.e. extracted from the normalized user profile objects). Once look-alike users have been identified, the internet display system may serve advertisements to the look-alike users, and analyze look-alike users' behaviors for storing the predicted similar user profile objects into the desired user profile object dataset, thus adapting to changing user behavior.

    摘要翻译: 一种用于使用期望的用户简档数据集作为种子加工学习模块来将互联网广告自适应地显示为类似用户的方法。 在可获得期望的用户简档之后,该用户简档被映射到其他外观用户(来自较大的用户数据库)。 该方法继续使所需的用户简档对象规范化,继续归一化已知的用户简档对象,然后使用归一化的所需用户简档对象播放机器学习训练模型。 评分引擎使用归一化的用户简档来基于提取的特征进行匹配(即从归一化的用户简档对象中提取)。 一旦看起来相似的用户已经被识别,互联网显示系统可以向类似用户提供广告,并且分析类似用户的行为以将预测的类似用户简档对象存储到期望的用户简档对象数据集中,从而适应于 改变用户行为。

    Adaptive Targeting for Finding Look-Alike Users
    2.
    发明申请
    Adaptive Targeting for Finding Look-Alike Users 有权
    适应性目标寻找类似用户

    公开(公告)号:US20120054040A1

    公开(公告)日:2012-03-01

    申请号:US12871775

    申请日:2010-08-30

    IPC分类号: G06Q30/00 G06F15/18

    摘要: A method for adaptive display of internet advertisements to look-alike users using a desired user profile dataset as a seed to machine learning modules. Upon availability of a desired user profile, that user profile is mapped other look-alike users (from a larger database of users). The method proceeds to normalize the desired user profile object, proceeds to normalize known user profile objects, then seeding a machine-learning training model with the normalized desired user profile object. A scoring engine uses the normalized user profiles for matching based on extracted features (i.e. extracted from the normalized user profile objects). Once look-alike users have been identified, the internet display system may serve advertisements to the look-alike users, and analyze look-alike users' behaviors for storing the predicted similar user profile objects into the desired user profile object dataset, thus adapting to changing user behavior.

    摘要翻译: 一种用于使用期望的用户简档数据集作为种子加工学习模块来将互联网广告自适应地显示为类似用户的方法。 在可获得期望的用户简档之后,该用户简档被映射到其他外观用户(来自较大的用户数据库)。 该方法继续使所需的用户简档对象规范化,继续归一化已知的用户简档对象,然后使用归一化的所需用户简档对象播放机器学习训练模型。 评分引擎使用归一化的用户简档来基于提取的特征进行匹配(即从归一化的用户简档对象中提取)。 一旦看起来相似的用户已经被识别,互联网显示系统可以向类似用户提供广告,并且分析类似用户的行为以将预测的类似用户简档对象存储到期望的用户简档对象数据集中,从而适应 改变用户行为。

    Clickable terms for contextual advertising
    3.
    发明授权
    Clickable terms for contextual advertising 有权
    内容相关广告的可点击字词

    公开(公告)号:US08533043B2

    公开(公告)日:2013-09-10

    申请号:US12751937

    申请日:2010-03-31

    IPC分类号: G06Q30/00

    CPC分类号: G06Q30/00 G06Q30/0243

    摘要: An online advertising selects online advertisements for display on a network location taking into account a probability that a candidate online advertisement will receive a click on a particular website. The system may determine a network location identity of the network location and transform a set of advertisements into a set of ranked advertisements. The system may determine an advertisement rank of a first advertisement among the set of ranked advertisements. The system then may generate a click probability value. The click probability value may reflect a click probability of the first advertisement by dividing an exponent of a weighted sum of the network location identity and the advertisement rank by one plus the exponent of the weighted sum of the network location identity and the advertisement rank.

    摘要翻译: 在线广告选择网络广告以在网络位置上显示,同时考虑到候选网络广告将在特定网站上接收到点击的概率。 系统可以确定网络位置的网络位置标识,并将一组广告变换成一组排名广告。 所述系统可以确定所述一组排名广告中的第一广告的广告等级。 然后,系统可以生成点击概率值。 点击概率值可以通过将网络位置身份和广告等级的加权和的指数除以加上网络位置身份和广告等级的加权和的指数之一来反映第一广告的点击概率。

    Clickable Terms for Contextual Advertising
    4.
    发明申请
    Clickable Terms for Contextual Advertising 有权
    上下文广告的可点击条款

    公开(公告)号:US20110246285A1

    公开(公告)日:2011-10-06

    申请号:US12751937

    申请日:2010-03-31

    IPC分类号: G06Q30/00 G06F17/30 G06F17/11

    CPC分类号: G06Q30/00 G06Q30/0243

    摘要: An online advertising selects online advertisements for display on a network location taking into account a probability that a candidate online advertisement will receive a click on a particular website. The system may determine a network location identity of the network location and transform a set of advertisements into a set of ranked advertisements. The system may determine an advertisement rank of a first advertisement among the set of ranked advertisements. The system then may generate a click probability value. The click probability value may reflect a click probability of the first advertisement by dividing an exponent of a weighted sum of the network location identity and the advertisement rank by one plus the exponent of the weighted sum of the network location identity and the advertisement rank.

    摘要翻译: 在线广告选择网络广告以在网络位置上显示,同时考虑到候选网络广告将在特定网站上接收到点击的概率。 系统可以确定网络位置的网络位置标识,并将一组广告变换成一组排名广告。 所述系统可以确定所述一组排名广告中的第一广告的广告等级。 然后,系统可以生成点击概率值。 点击概率值可以通过将网络位置身份和广告等级的加权和的指数除以加上网络位置身份和广告等级的加权和的指数之一来反映第一广告的点击概率。

    Finding Predictive Cross-Category Search Queries for Behavioral Targeting
    5.
    发明申请
    Finding Predictive Cross-Category Search Queries for Behavioral Targeting 有权
    查找行为定位的预测跨类别搜索查询

    公开(公告)号:US20110264513A1

    公开(公告)日:2011-10-27

    申请号:US12766279

    申请日:2010-04-23

    IPC分类号: G06Q30/00

    CPC分类号: G06Q30/02 G06Q30/0246

    摘要: A method and apparatus for finding predictive cross-category search queries for behavioral targeting in a networked online display advertising system. The methods include aggregating a training model dataset, the training model dataset comprising a history of clicks corresponding to historical advertisements. The training model dataset also contains plurality of targeting categories related to the history of clicks. Various techniques are disclosed for selecting a plurality of features from the training model dataset and calculating a click probability for a subject advertisement to be clicked by a user from a page, the calculating operations using features of the page that is to be presented to the user. Embodiments include mapping a particular query to one of the targeting categories and then presenting the subject advertisement selected on the basis of the value of the click probability. Normalization scales down the value of the click probabilities to filter out false positive categories.

    摘要翻译: 一种用于在联网的在线显示广告系统中找到用于行为定位的预测性跨类别搜索查询的方法和装置。 这些方法包括聚合训练模型数据集,训练模型数据集包括与历史广告相对应的点击历史。 培训模型数据集还包含与点击历史相关的多个定位类别。 公开了用于从训练模型数据集中选择多个特征并计算用户从页面点击的对象广告的点击概率的各种技术,使用要呈现给用户的页面的特征的计算操作 。 实施例包括将特定查询映射到目标类别之一,然后基于点击概率的值呈现所选择的主题广告。 规范化可以缩小点击概率的值,以过滤掉假阳性类别。

    Sensitivity Categorization of Web Pages
    6.
    发明申请
    Sensitivity Categorization of Web Pages 有权
    网页灵敏度分类

    公开(公告)号:US20110184817A1

    公开(公告)日:2011-07-28

    申请号:US12696006

    申请日:2010-01-28

    CPC分类号: G06Q30/02 G06Q30/0277

    摘要: Methods, systems, and computer programs for categorizing the sensitivity of web pages are presented. In one method, a space of sensitive pages is identified based on the sensitivity categorization of a first plurality of web pages and a second plurality of web pages. The first plurality of web pages is obtained by performing search queries using known sensitive words, and the second plurality of web pages includes randomly selected web pages. Additionally, the method identifies a third plurality of web pages that includes web pages on or near the boundary between the space of sensitive pages and the space of non-sensitive pages. The space of sensitive pages is then redefined based on the sensitivity categorization of the first, second, and third pluralities of web pages. Once the space of sensitive pages is defined, the method is used to determine that a given web page is sensitive when the given web page is in the space of sensitive pages. Web pages are included in a marketing operation when the web pages are not sensitive.

    摘要翻译: 介绍了分类网页敏感度的方法,系统和计算机程序。 在一种方法中,基于第一多个网页和第二多个网页的灵敏度分类来识别敏感页面的空间。 通过使用已知敏感词执行搜索查询获得第一多个网页,并且第二多个网页包括随机选择的网页。 此外,该方法识别在敏感页面的空间和非敏感页面的空间之间的边界上或附近包括网页的第三多个网页。 然后,基于第一,第二和第三多个网页的灵敏度分类,重新定义敏感页面的空间。 一旦定义了敏感页面的空间,当给定的网页位于敏感页面的空间中时,该方法用于确定给定的网页是否敏感。 当网页不敏感时,网页被包含在营销操作中。

    Sensitivity categorization of web pages
    8.
    发明授权
    Sensitivity categorization of web pages 有权
    网页敏感性分类

    公开(公告)号:US08589231B2

    公开(公告)日:2013-11-19

    申请号:US12696006

    申请日:2010-01-28

    IPC分类号: G06Q30/00

    CPC分类号: G06Q30/02 G06Q30/0277

    摘要: Methods, systems, and computer programs for categorizing the sensitivity of web pages are presented. In one method, a space of sensitive pages is identified based on the sensitivity categorization of a first plurality of web pages and a second plurality of web pages. The first plurality of web pages is obtained by performing search queries using known sensitive words, and the second plurality of web pages includes randomly selected web pages. Additionally, the method identifies a third plurality of web pages that includes web pages on or near the boundary between the space of sensitive pages and the space of non-sensitive pages. The space of sensitive pages is then redefined based on the sensitivity categorization of the first, second, and third pluralities of web pages. Once the space of sensitive pages is defined, the method is used to determine that a given web page is sensitive when the given web page is in the space of sensitive pages. Web pages are included in a marketing operation when the web pages are not sensitive.

    摘要翻译: 介绍了分类网页敏感度的方法,系统和计算机程序。 在一种方法中,基于第一多个网页和第二多个网页的灵敏度分类来识别敏感页面的空间。 通过使用已知敏感词执行搜索查询获得第一多个网页,并且第二多个网页包括随机选择的网页。 此外,该方法识别在敏感页面的空间和非敏感页面的空间之间的边界上或附近包括网页的第三多个网页。 然后,基于第一,第二和第三多个网页的灵敏度分类,重新定义敏感页面的空间。 一旦定义了敏感页面的空间,当给定的网页位于敏感页面的空间中时,该方法用于确定给定的网页是否敏感。 当网页不敏感时,网页被包含在营销操作中。

    SYSTEM FOR TRAINING CLASSIFIERS IN MULTIPLE CATEGORIES THROUGH ACTIVE LEARNING
    9.
    发明申请
    SYSTEM FOR TRAINING CLASSIFIERS IN MULTIPLE CATEGORIES THROUGH ACTIVE LEARNING 有权
    通过主动学习训练多个类别中的分类器的系统

    公开(公告)号:US20120095943A1

    公开(公告)日:2012-04-19

    申请号:US12905543

    申请日:2010-10-15

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: A system for training classifiers in multiple categories through an active learning system, including a computer having a memory and a processor, the processor programmed to: train an initial set of m binary one-versus-all classifiers, one for each category in a taxonomy, on a labeled dataset of examples stored in a database coupled with the computer; uniformly sample up to a predetermined large number of examples from a second, larger dataset of unlabeled examples stored in a database coupled with the computer; order the sampled unlabeled examples in order of informativeness for each classifier; determine a minimum subset of the unlabeled examples that are most informative for a maximum number of the classifiers to form an active set for learning; and use editorially-labeled versions of the examples of the active set to re-train the classifiers, thereby improving the accuracy of at least some of the classifiers.

    摘要翻译: 一种用于通过主动学习系统来训练分类器的系统,包括具有存储器和处理器的计算机,该处理器被编程为:训练一组初始的二进制一对全分类器,一个分类中的每个类别 在存储在与计算机耦合的数据库中的示例的标记数据集上; 从存储在与计算机耦合的数据库中的未标记示例的第二较大数据集中均匀地采样到预定的大量示例; 按照每个分类器的信息顺序对采样的未标记的示例进行排序; 确定对最大数量的分类器形成用于学习的活动集合的最有帮助的未标记示例的最小子集; 并使用编辑标签的版本的活动集的示例重新训练分类器,从而提高至少一些分类器的准确性。

    Contextual advertising with user features
    10.
    发明申请
    Contextual advertising with user features 有权
    具有用户功能的内容相关广告

    公开(公告)号:US20120047020A1

    公开(公告)日:2012-02-23

    申请号:US12806802

    申请日:2010-08-19

    IPC分类号: G06Q30/00

    摘要: Disclosed are apparatus and methods for apparatus and methods for facilitating contextual selection of advertisements for displaying online via a computer network. In general, user features in the form of text are provided in conjunction with web page content for contextual advertisement matching. In one embodiment, a request for an advertisement to be displayed in a current web page that has been requested by a current user is received. The current user is associated with one or more current user characteristics from a plurality of different user characteristics, and the current web page has an associated content. A mapping model and the one or more current user characteristics are used to obtain a plurality of user-relevant terms for each of the one or more current user characteristics. A combination of the content of the current web page and obtained user-relevant terms are provided for selecting an advertisement for displaying with the current web page based on such combination.

    摘要翻译: 公开了用于促进通过计算机网络在线显示的广告的上下文选择的装置和方法的装置和方法。 通常,文本形式的用户特征与用于上下文广告匹配的网页内容一起提供。 在一个实施例中,接收在当前用户请求的当前网页中显示广告的请求。 当前用户与来自多个不同用户特征的一个或多个当前用户特征相关联,并且当前网页具有相关联的内容。 使用映射模型和一个或多个当前用户特征来为一个或多个当前用户特征中的每一个获得多个用户相关项。 提供当前网页的内容和获得的用户相关术语的组合,用于基于这样的组合来选择用于与当前网页一起显示的广告。