-
公开(公告)号:US11783008B2
公开(公告)日:2023-10-10
申请号:US17091403
申请日:2020-11-06
Applicant: Adobe Inc.
Inventor: Rajiv Jain , Varun Manjunatha , Joseph Barrow , Vlad Ion Morariu , Franck Dernoncourt , Sasha Spala , Nicholas Miller
IPC: G06F18/214 , G06F40/30 , G06F40/117 , G06V30/413 , G06F18/21 , G06F18/2415 , G06F16/33
CPC classification number: G06F18/2148 , G06F18/217 , G06F18/2415 , G06F40/117 , G06F40/30 , G06V30/413 , G06F16/33 , G06V2201/10
Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
-
公开(公告)号:US12147499B2
公开(公告)日:2024-11-19
申请号:US18242075
申请日:2023-09-05
Applicant: Adobe Inc.
Inventor: Rajiv Jain , Varun Manjunatha , Joseph Barrow , Vlad Ion Morariu , Franck Dernoncourt , Sasha Spala , Nicholas Miller
IPC: G06F18/214 , G06F16/33 , G06F18/21 , G06F18/2415 , G06F40/117 , G06F40/30 , G06V30/413
Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
-
公开(公告)号:US20230409672A1
公开(公告)日:2023-12-21
申请号:US18242075
申请日:2023-09-05
Applicant: Adobe Inc.
Inventor: Rajiv Jain , Varun Manjunatha , Joseph Barrow , Vlad Ion Morariu , Franck Dernoncourt , Sasha Spala , Nicholas Miller
IPC: G06F18/214 , G06F40/30 , G06F40/117 , G06V30/413 , G06F18/21 , G06F18/2415
CPC classification number: G06F18/2148 , G06F40/30 , G06F40/117 , G06V30/413 , G06F18/217 , G06F18/2415 , G06V2201/10 , G06F16/33
Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
-
公开(公告)号:US20210326371A1
公开(公告)日:2021-10-21
申请号:US16849885
申请日:2020-04-15
Applicant: Adobe Inc.
Inventor: Trung Bui , Yu Gong , Tushar Dublish , Sasha Spala , Sachin Soni , Nicholas Miller , Joon Kim , Franck Dernoncourt , Carl Dockhorn , Ajinkya Kale
Abstract: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.
-
公开(公告)号:US20220147770A1
公开(公告)日:2022-05-12
申请号:US17091403
申请日:2020-11-06
Applicant: Adobe Inc.
Inventor: Rajiv Jain , Varun Ion Manjunatha , Joseph Barrow , Vlad Ion Moraniu , Franck Dernoncourt , Sasha Spala , Nicholas Miller
IPC: G06K9/62 , G06K9/00 , G06F40/30 , G06F40/117
Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
-
公开(公告)号:US12130850B2
公开(公告)日:2024-10-29
申请号:US18147960
申请日:2022-12-29
Applicant: Adobe Inc.
Inventor: Trung Bui , Yu Gong , Tushar Dublish , Sasha Spala , Sachin Soni , Nicholas Miller , Joon Kim , Franck Dernoncourt , Carl Dockhorn , Ajinkya Kale
CPC classification number: G06F16/3347 , G06F40/30 , G06N5/04 , G06N20/00
Abstract: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.
-
公开(公告)号:US20230133583A1
公开(公告)日:2023-05-04
申请号:US18147960
申请日:2022-12-29
Applicant: Adobe Inc.
Inventor: Trung Bui , Yu Gong , Tushar Dublish , Sasha Spala , Sachin Soni , Nicholas Miller , Joon Kim , Franck Dernoncourt , Carl Dockhorn , Ajinkya Kale
Abstract: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.
-
公开(公告)号:US11567981B2
公开(公告)日:2023-01-31
申请号:US16849885
申请日:2020-04-15
Applicant: Adobe Inc.
Inventor: Trung Bui , Yu Gong , Tushar Dublish , Sasha Spala , Sachin Soni , Nicholas Miller , Joon Kim , Franck Dernoncourt , Carl Dockhorn , Ajinkya Kale
Abstract: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.
-
-
-
-
-
-
-