Generating digital annotations for evaluating and training automatic electronic document annotation models

    公开(公告)号:US11232255B2

    公开(公告)日:2022-01-25

    申请号:US16007632

    申请日:2018-06-13

    申请人: Adobe Inc.

    IPC分类号: G06F40/169

    摘要: Systems, methods, and non-transitory computer-readable media are disclosed that collect and analyze annotation performance data to generate digital annotations for evaluating and training automatic electronic document annotation models. In particular, in one or more embodiments, the disclosed systems provide electronic documents to annotators based on annotator topic preferences. The disclosed systems then identify digital annotations and annotation performance data such as a time period spent by an annotator in generating digital annotations and annotator responses to digital annotation questions. Furthermore, in one or more embodiments, the disclosed systems utilize the identified digital annotations and the annotation performance data to generate a final set of reliable digital annotations. Additionally, in one or more embodiments, the disclosed systems provide the final set of digital annotations for utilization in training a machine learning model to generate annotations for electronic documents.

    MODEL-BASED SEMANTIC TEXT SEARCHING

    公开(公告)号:US20210326371A1

    公开(公告)日:2021-10-21

    申请号:US16849885

    申请日:2020-04-15

    申请人: Adobe Inc.

    摘要: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.

    GENERATING DIGITAL ANNOTATIONS FOR EVALUATING AND TRAINING AUTOMATIC ELECTRONIC DOCUMENT ANNOTATION MODELS

    公开(公告)号:US20190384807A1

    公开(公告)日:2019-12-19

    申请号:US16007632

    申请日:2018-06-13

    申请人: Adobe Inc.

    摘要: Systems, methods, and non-transitory computer-readable media are disclosed that collect and analyze annotation performance data to generate digital annotations for evaluating and training automatic electronic document annotation models. In particular, in one or more embodiments, the disclosed systems provide electronic documents to annotators based on annotator topic preferences. The disclosed systems then identify digital annotations and annotation performance data such as a time period spent by an annotator in generating digital annotations and annotator responses to digital annotation questions. Furthermore, in one or more embodiments, the disclosed systems utilize the identified digital annotations and the annotation performance data to generate a final set of reliable digital annotations. Additionally, in one or more embodiments, the disclosed systems provide the final set of digital annotations for utilization in training a machine learning model to generate annotations for electronic documents.

    Model-based semantic text searching

    公开(公告)号:US12130850B2

    公开(公告)日:2024-10-29

    申请号:US18147960

    申请日:2022-12-29

    申请人: Adobe Inc.

    摘要: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.

    MODEL-BASED SEMANTIC TEXT SEARCHING

    公开(公告)号:US20230133583A1

    公开(公告)日:2023-05-04

    申请号:US18147960

    申请日:2022-12-29

    申请人: Adobe Inc.

    摘要: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.

    Model-based semantic text searching

    公开(公告)号:US11567981B2

    公开(公告)日:2023-01-31

    申请号:US16849885

    申请日:2020-04-15

    申请人: Adobe Inc.

    摘要: Techniques and systems are described for performing semantic text searches. A semantic text-searching solution uses a machine learning system (such as a deep learning system) to determine associations between the semantic meanings of words. These associations are not limited by the spelling, syntax, grammar, or even definition of words. Instead, the associations can be based on the context in which characters, words, and/or phrases are used in relation to one another. In response to detecting a request to locate text within an electronic document associated with a keyword, the semantic text-searching solution can return strings within the document that have matching and/or related semantic meanings or contexts, in addition to exact matches (e.g., string matches) within the document. The semantic text-searching solution can then output an indication of the matching strings.