-
公开(公告)号:US20230098115A1
公开(公告)日:2023-03-30
申请号:US18062460
申请日:2022-12-06
申请人: Adobe Inc. , Université Laval
发明人: Kalyan Sunkavalli , Yannick Hold-Geoffroy , Christian Gagne , Marc-Andre Gardner , Jean-Francois Lalonde
摘要: This disclosure relates to methods, non-transitory computer readable media, and systems that can render a virtual object in a digital image by using a source-specific-lighting-estimation-neural network to generate three-dimensional (“3D”) lighting parameters specific to a light source illuminating the digital image. To generate such source-specific-lighting parameters, for instance, the disclosed systems utilize a compact source-specific-lighting-estimation-neural network comprising both common network layers and network layers specific to different lighting parameters. In some embodiments, the disclosed systems further train such a source-specific-lighting-estimation-neural network to accurately estimate spatially varying lighting in a digital image based on comparisons of predicted environment maps from a differentiable-projection layer with ground-truth-environment maps.
-
2.
公开(公告)号:US20210065440A1
公开(公告)日:2021-03-04
申请号:US16558975
申请日:2019-09-03
申请人: Adobe Inc. , Université Laval
发明人: Kalyan Sunkavalli , Yannick Hold-Geoffroy , Christian Gagne , Marc-Andre Gardner , Jean-Francois Lalonde
摘要: This disclosure relates to methods, non-transitory computer readable media, and systems that can render a virtual object in a digital image by using a source-specific-lighting-estimation-neural network to generate three-dimensional (“3D”) lighting parameters specific to a light source illuminating the digital image. To generate such source-specific-lighting parameters, for instance, the disclosed systems utilize a compact source-specific-lighting-estimation-neural network comprising both common network layers and network layers specific to different lighting parameters. In some embodiments, the disclosed systems further train such a source-specific-lighting-estimation-neural network to accurately estimate spatially varying lighting in a digital image based on comparisons of predicted environment maps from a differentiable-projection layer with ground-truth-environment maps.
-
公开(公告)号:US12008710B2
公开(公告)日:2024-06-11
申请号:US18062460
申请日:2022-12-06
申请人: Adobe Inc. , Université Laval
发明人: Kalyan Sunkavalli , Yannick Hold-Geoffroy , Christian Gagne , Marc-Andre Gardner , Jean-Francois Lalonde
CPC分类号: G06T15/506 , G06N3/08 , G06T7/50 , G06T7/60 , G06T7/70 , G06T7/90 , G06T2200/24 , G06T2207/20081 , G06T2207/20084
摘要: This disclosure relates to methods, non-transitory computer readable media, and systems that can render a virtual object in a digital image by using a source-specific-lighting-estimation-neural network to generate three-dimensional (“3D”) lighting parameters specific to a light source illuminating the digital image. To generate such source-specific-lighting parameters, for instance, the disclosed systems utilize a compact source-specific-lighting-estimation-neural network comprising both common network layers and network layers specific to different lighting parameters. In some embodiments, the disclosed systems further train such a source-specific-lighting-estimation-neural network to accurately estimate spatially varying lighting in a digital image based on comparisons of predicted environment maps from a differentiable-projection layer with ground-truth-environment maps.
-
4.
公开(公告)号:US11538216B2
公开(公告)日:2022-12-27
申请号:US16558975
申请日:2019-09-03
申请人: Adobe Inc. , Université Laval
发明人: Kalyan Sunkavalli , Yannick Hold-Geoffroy , Christian Gagne , Marc-Andre Gardner , Jean-Francois Lalonde
摘要: This disclosure relates to methods, non-transitory computer readable media, and systems that can render a virtual object in a digital image by using a source-specific-lighting-estimation-neural network to generate three-dimensional (“3D”) lighting parameters specific to a light source illuminating the digital image. To generate such source-specific-lighting parameters, for instance, the disclosed systems utilize a compact source-specific-lighting-estimation-neural network comprising both common network layers and network layers specific to different lighting parameters. In some embodiments, the disclosed systems further train such a source-specific-lighting-estimation-neural network to accurately estimate spatially varying lighting in a digital image based on comparisons of predicted environment maps from a differentiable-projection layer with ground-truth-environment maps.
-
-
-