摘要:
A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.
摘要:
A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.
摘要:
A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.
摘要:
A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.
摘要:
A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.
摘要:
A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.
摘要:
Systems and methods for supporting a diagnostic workflow from a computer system are disclosed herein. In accordance with one implementation, a set of pre-identified anatomical landmarks associated with one or more structures of interest within one or more medical images are presented to a user. In response to a user input selecting at least one or more regions of interest including one or more of the pre-identified anatomical landmarks, the user is automatically navigated to the selected region of interest. In another implementation, a second user input selecting one or more measurement tools is received. An evaluation may be automatically determined based on one or more of the set of anatomical landmarks in response to the second user input.
摘要:
Systems and methods for supporting a diagnostic workflow from a computer system are disclosed herein. In accordance with one implementation, a set of pre-identified anatomical landmarks associated with one or more structures of interest within one or more medical images are presented to a user. In response to a user input selecting at least one or more regions of interest including one or more of the pre-identified anatomical landmarks, the user is automatically navigated to the selected region of interest. In another implementation, a second user input selecting one or more measurement tools is received. An evaluation may be automatically determined based on one or more of the set of anatomical landmarks in response to the second user input.
摘要:
Described herein is a framework for automatically classifying a structure in digital image data are described herein. In one implementation, a first set of features is extracted from digital image data, and used to learn a discriminative model. The discriminative model may be associated with at least one conditional probability of a class label given an image data observation Based on the conditional probability, at least one likelihood measure of the structure co-occurring with another structure in the same sub-volume of the digital image data is determined. A second set of features may then be extracted from the likelihood measure.
摘要:
Described herein is a framework for automatically classifying a structure in digital image data are described herein. In one implementation, a first set of features is extracted from digital image data, and used to learn a discriminative model. The discriminative model may be associated with at least one conditional probability of a class label given an image data observation Based on the conditional probability, at least one likelihood measure of the structure co-occurring with another structure in the same sub-volume of the digital image data is determined. A second set of features may then be extracted from the likelihood measure.