User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography
    1.
    发明申请
    User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography 有权
    用于三维计算机断层扫描结构中息肉注解,分割和测量的用户界面

    公开(公告)号:US20090080747A1

    公开(公告)日:2009-03-26

    申请号:US12231771

    申请日:2008-09-05

    IPC分类号: G06K9/00

    摘要: A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.

    摘要翻译: 公开了一种用于在计算机断层造影(CTC)体积中提供用于息肉注释,分割和测量的用户界面的方法和系统。 界面在CTC体积中接收初始息肉位置,并根据初始息肉位置自动分段息肉。 为了分割息肉,使用训练有素的3D点检测器在CTC体积中检测息肉末端。 然后将局部极坐标系拟合到CTC体积中的结肠表面,其中原点在检测到的息肉末端。 使用训练有素的3D框,在局部极坐标系的每个轴上检测Polyp内部体素和息肉外部体素。 基于检测到的息肉内部体素和息肉外部体素,通过使用训练有素的分类器进行升压1D曲线解析,在局部极坐标系的每个轴上检测边界体素。 这导致分段息肉边界。 分段息肉显示在用户界面中,用户可以使用界面修改分段息肉边界。 界面可以在三维中测量分段息肉的大小。 用户还可以在CTC卷中使用界面进行息肉注释。

    Method and system for polyp segmentation for 3D computed tomography colonography
    2.
    发明申请
    Method and system for polyp segmentation for 3D computed tomography colonography 有权
    用于3D计算机断层扫描结构的息肉分割方法和系统

    公开(公告)号:US20090074272A1

    公开(公告)日:2009-03-19

    申请号:US12231772

    申请日:2008-09-05

    IPC分类号: G06K9/00

    摘要: A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.

    摘要翻译: 公开了一种计算机断层扫描(CTC)体积中息肉分割的方法和系统。 息肉分割方法采用三阶段概率二分类方法,自动分割CTC体积周围组织的息肉体素。 基于输入的初始息肉位置,使用训练有素的3D点检测器在CTC体积中检测息肉末端。 然后将局部极坐标系拟合到CTC体积中的结肠表面,其中原点在检测到的息肉末端。 使用训练有素的3D框,在局部极坐标系的每个轴上检测Polyp内部体素和息肉外部体素。 基于检测到的息肉内部体素和息肉外部体素,通过使用训练有素的分类器进行升压1D曲线解析,在局部极坐标系的每个轴上检测边界体素。 这导致分段息肉边界。

    Method and system for polyp segmentation for 3D computed tomography colonography
    3.
    发明授权
    Method and system for polyp segmentation for 3D computed tomography colonography 有权
    用于3D计算机断层扫描结构的息肉分割方法和系统

    公开(公告)号:US08184888B2

    公开(公告)日:2012-05-22

    申请号:US12231772

    申请日:2008-09-05

    IPC分类号: G06K9/46

    摘要: A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.

    摘要翻译: 公开了一种计算机断层扫描(CTC)体积中息肉分割的方法和系统。 息肉分割方法采用三阶段概率二分类方法,自动分割CTC体积周围组织的息肉体素。 基于输入的初始息肉位置,使用训练有素的3D点检测器在CTC体积中检测息肉末端。 然后将局部极坐标系拟合到CTC体积中的结肠表面,其中原点在检测到的息肉末端。 使用训练有素的3D框,在局部极坐标系的每个轴上检测Polyp内部体素和息肉外部体素。 基于检测到的息肉内部体素和息肉外部体素,通过使用训练有素的分类器进行升压1D曲线解析,在局部极坐标系的每个轴上检测边界体素。 这导致分段息肉边界。

    User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography
    4.
    发明授权
    User interface for polyp annotation, segmentation, and measurement in 3D computed tomography colonography 有权
    用于三维计算机断层扫描结构中息肉注解,分割和测量的用户界面

    公开(公告)号:US08126244B2

    公开(公告)日:2012-02-28

    申请号:US12231771

    申请日:2008-09-05

    IPC分类号: G06K9/34

    摘要: A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.

    摘要翻译: 公开了一种用于在计算机断层造影(CTC)体积中提供用于息肉注释,分割和测量的用户界面的方法和系统。 界面在CTC体积中接收初始息肉位置,并根据初始息肉位置自动分段息肉。 为了分割息肉,使用训练有素的3D点检测器在CTC体积中检测息肉末端。 然后将局部极坐标系拟合到CTC体积中的结肠表面,其中原点在检测到的息肉末端。 使用训练有素的3D框,在局部极坐标系的每个轴上检测Polyp内部体素和息肉外部体素。 基于检测到的息肉内部体素和息肉外部体素,通过使用训练有素的分类器进行升压1D曲线解析,在局部极坐标系的每个轴上检测边界体素。 这导致分段息肉边界。 分段息肉显示在用户界面中,用户可以使用界面修改分段息肉边界。 界面可以在三维中测量分段息肉的大小。 用户还可以在CTC卷中使用界面进行息肉注释。

    Method and system for detection and registration of 3D objects using incremental parameter learning
    5.
    发明授权
    Method and system for detection and registration of 3D objects using incremental parameter learning 有权
    使用增量参数学习检测和注册3D对象的方法和系统

    公开(公告)号:US08068654B2

    公开(公告)日:2011-11-29

    申请号:US12012386

    申请日:2008-02-01

    IPC分类号: G06K9/00 G06T15/00

    摘要: A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.

    摘要翻译: 公开了一种用于检测图像中的3D物体的方法和系统。 特别地,公开了使用增量参数学习和ICV特有的先前学习的3D计算机断层摄影(CT)图像中Ileo-Cecal Valve检测的方法和系统。 顺序训练第一,第二和第三分类器以检测在3D图像中界定对象的框的位置,缩放和取向参数的候选。 在每个顺序分类器的训练中,基于从先前的训练步骤得到的检测到的候选,通过在当前学习投影子空间(位置,比例,方向)中扫描对象的配置参数来生成新的训练样本。 这允许同时检测和注册具有全9自由度的3D对象。 ICV具体的先验学习可用于检测ICV孔口的候选体素,并使用每个候选体素上的约束取向对齐来检测初始ICV盒候选。

    Method and system for detection and registration of 3D objects using incremental parameter learning
    6.
    发明申请
    Method and system for detection and registration of 3D objects using incremental parameter learning 有权
    使用增量参数学习检测和注册3D对象的方法和系统

    公开(公告)号:US20080211812A1

    公开(公告)日:2008-09-04

    申请号:US12012386

    申请日:2008-02-01

    IPC分类号: G06T17/00 G06K9/00

    摘要: A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.

    摘要翻译: 公开了一种用于检测图像中的3D物体的方法和系统。 特别地,公开了使用增量参数学习和ICV特有的先前学习的3D计算机断层摄影(CT)图像中Ileo-Cecal Valve检测的方法和系统。 顺序训练第一,第二和第三分类器以检测在3D图像中界定对象的框的位置,缩放和取向参数的候选。 在每个顺序分类器的训练中,基于从先前训练步骤产生的检测到的候选,通过在当前学习投影子空间(位置,比例,方向)中扫描对象的配置参数来生成新的训练样本。 这允许同时检测和注册具有全9自由度的3D对象。 ICV具体的先验学习可用于检测ICV孔口的候选体素,并使用每个候选体素上的约束取向对齐来检测初始ICV盒候选。

    Multi-level contextual learning of data
    9.
    发明授权
    Multi-level contextual learning of data 有权
    数据的多层次上下文学习

    公开(公告)号:US08724866B2

    公开(公告)日:2014-05-13

    申请号:US12962901

    申请日:2010-12-08

    IPC分类号: G06K9/00

    CPC分类号: G06K9/4638 G06K2209/05

    摘要: Described herein is a framework for automatically classifying a structure in digital image data are described herein. In one implementation, a first set of features is extracted from digital image data, and used to learn a discriminative model. The discriminative model may be associated with at least one conditional probability of a class label given an image data observation Based on the conditional probability, at least one likelihood measure of the structure co-occurring with another structure in the same sub-volume of the digital image data is determined. A second set of features may then be extracted from the likelihood measure.

    摘要翻译: 这里描述了用于自动分类数字图像数据中的结构的框架。 在一个实现中,从数字图像数据中提取第一组特征,并用于学习辨别模型。 鉴别模型可以与给定图像数据观察的类标签的至少一个条件概率相关联。基于条件概率,与数字的相同子体积中的另一结构共同出现的结构的至少一个似然度量 确定图像数据。 然后可以从似然度量中提取第二组特征。

    Multi-Level Contextual Learning of Data
    10.
    发明申请
    Multi-Level Contextual Learning of Data 有权
    数据的多层次上下文学习

    公开(公告)号:US20110075920A1

    公开(公告)日:2011-03-31

    申请号:US12962901

    申请日:2010-12-08

    IPC分类号: G06K9/62

    CPC分类号: G06K9/4638 G06K2209/05

    摘要: Described herein is a framework for automatically classifying a structure in digital image data are described herein. In one implementation, a first set of features is extracted from digital image data, and used to learn a discriminative model. The discriminative model may be associated with at least one conditional probability of a class label given an image data observation Based on the conditional probability, at least one likelihood measure of the structure co-occurring with another structure in the same sub-volume of the digital image data is determined. A second set of features may then be extracted from the likelihood measure.

    摘要翻译: 这里描述了用于自动分类数字图像数据中的结构的框架。 在一个实现中,从数字图像数据中提取第一组特征,并用于学习辨别模型。 鉴别模型可以与给定图像数据观察的类标签的至少一个条件概率相关联。基于条件概率,与数字的相同子体积中的另一结构共同出现的结构的至少一个似然度量 确定图像数据。 然后可以从似然度量中提取第二组特征。