System and method for coronary digital subtraction angiography
    5.
    发明授权
    System and method for coronary digital subtraction angiography 有权
    冠状动脉数字减影血管造影的系统和方法

    公开(公告)号:US07940971B2

    公开(公告)日:2011-05-10

    申请号:US11779405

    申请日:2007-07-18

    IPC分类号: G06K9/00

    摘要: A method and system for extracting motion-based layers from fluoroscopic image sequences are disclosed. Portions of multiple objects, such as anatomical structures, are detected in the fluoroscopic images. Motion of the objects is estimated between the images is the sequence of fluoroscopic images. The images in the fluoroscopic image sequence are then divided into layers based on the estimated motion. In a particular implementation, the coronary vessel tree and the diaphragm can be extracted in separate motion layers from coronary angiograph fluoroscopic image sequence.

    摘要翻译: 公开了一种从透视图像序列中提取基于运动的层的方法和系统。 在透视图像中检测到多个对象的部分,例如解剖结构。 在图像之间估计物体的运动是荧光图像的序列。 然后,基于估计的运动将透视图像序列中的图像分成多个层。 在特定的实施方案中,冠状动脉血管和隔膜可以与冠状动脉血管造影术透视图像序列分开提取。

    Method and system for evaluating image segmentation based on visibility
    6.
    发明申请
    Method and system for evaluating image segmentation based on visibility 有权
    基于可见度评估图像分割的方法和系统

    公开(公告)号:US20090080729A1

    公开(公告)日:2009-03-26

    申请号:US12231634

    申请日:2008-09-04

    IPC分类号: A61B5/00

    摘要: A method and system for evaluating image segmentation is disclosed. In order to quantitatively evaluate an image segmentation technique, synthetic image data is generated and the synthetic image data is segmented to extract an object using the segmentation technique. This segmentation results in a foreground containing the extracted object and a background. The visibility of the extracted object is quantitatively measured based on the intensity distributions of the segmented foreground and background. The visibility is quantitatively measured by calculating the Jeffries-Matusita distance between the foreground and background intensity distributions. This method can be used to evaluate segmentation of vessels in fluoroscopic image sequences by coronary digital subtraction angiography (DSA).

    摘要翻译: 公开了一种用于评估图像分割的方法和系统。 为了定量评估图像分割技术,生成合成图像数据,并且使用分割技术对合成图像数据进行分割以提取对象。 该分割导致包含提取的对象和背景的前景。 基于分割的前景和背景的强度分布,定量地测量提取的对象的可视性。 通过计算前景和背景强度分布之间的Jeffries-Matusita距离来定量测量可见度。 该方法可用于通过冠状动脉数字减影血管造影(DSA)评估荧光镜图像序列中血管的分割。

    System and method for coronary digital subtraction angiography
    7.
    发明授权
    System and method for coronary digital subtraction angiography 有权
    冠状动脉数字减影血管造影的系统和方法

    公开(公告)号:US08094903B2

    公开(公告)日:2012-01-10

    申请号:US12157837

    申请日:2008-06-13

    IPC分类号: G06K9/03

    摘要: A method and system for extracting coronary vessels fluoroscopic image sequences using coronary digital subtraction angiography (DSA) are disclosed. A set of mask images of a coronary region is received, and a sequence of contrast images for the coronary region is received. For each contrast image, vessel regions are detected in the contrast image using learning-based vessel segment detection and a background region of the contrast image is determined based on the detected vessel regions. Background motion is estimated between one of the mask images and the background region of the contrast image, and the mask image is warped based on the estimated background motion to generate an estimated background layer. The estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.

    摘要翻译: 公开了使用冠状动脉数字减影血管造影(DSA)提取冠脉血管荧光镜图像序列的方法和系统。 接收冠状动脉区域的一组掩模图像,并且接收冠状动脉区域的对比度图像序列。 对于每个对比图像,使用基于学习的血管段检测在对比图像中检测血管区域,并且基于检测到的血管区域确定造影剂图像的背景区域。 在掩模图像之一和对比度图像的背景区域之间估计背景运动,并且基于所估计的背景运动来对掩模图像进行翘曲以生成估计的背景层。 从对比图像中减去估计的背景层,以提取对比度图像的冠状血管层。

    System and method for coronary digital subtraction angiography
    8.
    发明申请
    System and method for coronary digital subtraction angiography 有权
    冠状动脉数字减影血管造影的系统和方法

    公开(公告)号:US20090010512A1

    公开(公告)日:2009-01-08

    申请号:US12157837

    申请日:2008-06-13

    IPC分类号: H05G1/64 G06K9/00

    摘要: A method and system for extracting coronary vessels fluoroscopic image sequences using coronary digital subtraction angiography (DSA) are disclosed. A set of mask images of a coronary region is received, and a sequence of contrast images for the coronary region is received. For each contrast image, vessel regions are detected in the contrast image using learning-based vessel segment detection and a background region of the contrast image is determined based on the detected vessel regions. Background motion is estimated between one of the mask images and the background region of the contrast image, and the mask image is warped based on the estimated background motion to generate an estimated background layer. The estimated background layer is subtracted from the contrast image to extract a coronary vessel layer for the contrast image.

    摘要翻译: 公开了使用冠状动脉数字减影血管造影(DSA)提取冠脉血管荧光镜图像序列的方法和系统。 接收冠状动脉区域的一组掩模图像,并且接收冠状动脉区域的对比度图像序列。 对于每个对比图像,使用基于学习的血管段检测在对比图像中检测血管区域,并且基于检测到的血管区域确定造影剂图像的背景区域。 在掩模图像之一和对比度图像的背景区域之间估计背景运动,并且基于所估计的背景运动来对掩模图像进行翘曲以生成估计的背景层。 从对比图像中减去估计的背景层,以提取对比度图像的冠状血管层。

    Method and System for Object Detection Using Probabilistic Boosting Cascade Tree
    10.
    发明申请
    Method and System for Object Detection Using Probabilistic Boosting Cascade Tree 审中-公开
    使用概率提升级联树的对象检测方法和系统

    公开(公告)号:US20080071711A1

    公开(公告)日:2008-03-20

    申请号:US11856109

    申请日:2007-09-17

    IPC分类号: G06F15/18

    摘要: A method and system for object detection using a probabilistic boosting cascade tree (PBCT) is disclosed. A PBCT is a machine learning based classifier having a structure that is driven by training data and determined during the training process without user input. In a PBCT training method, for each node in the PBCT, a classifier is trained for the node based on training data received at the node. The performance of the classifier trained for the node is then evaluated based on the training data. Based on the performance of the classifier, the node is set to either a cascade node or a tree node. If the performance indicates that the data is relatively easy to classify, the node can be set as a cascade node. If the performance indicates that the data is relatively difficult to classify, the node can be set as a tree node. The trained PBCT can then be used to detect objects or classify data. For example, a trained PBCT can be used to detect lymph nodes in CT volume data.

    摘要翻译: 公开了一种使用概率升压级联树(PBCT)进行物体检测的方法和系统。 PBCT是基于机器学习的分类器,其具有由训练数据驱动的结构,并且在训练过程中确定而不需要用户输入。 在PBCT训练方法中,对于PBCT中的每个节点,基于在节点处接收到的训练数据,为节点训练分类器。 然后根据训练数据对针对节点训练的分类器的性能进行评估。 基于分类器的性能,将节点设置为级联节点或树节点。 如果性能指示数据相对容易分类,则可以将节点设置为级联节点。 如果性能指示数据相对较难分类,则可以将节点设置为树节点。 然后,训练有素的PBCT可用于检测对象或对数据进行分类。 例如,训练有素的PBCT可用于检测CT体积数据中的淋巴结。