摘要:
A virtual map of vessels of interest in medical procedures, such as coronary angioplasty is created so that doses of contrasting agent given to a patient may be reduced. A position of a coronary guidewire is determined and locations of vessel boundaries are found. When the contrast agent has dissipated, virtual maps of the vessels are created as new images. The locations of the determined vessel boundaries are imported to a mapping system and an image obtained without using a contrast agent is modified based on the imported locations of vessel boundaries. This creates a virtual map of the vessels.
摘要:
A method and system for vessel segmentation in fluoroscopic images is disclosed. Hierarchical learning-based detection is used to perform the vessel segmentation. A boundary classifier is trained and used to detect boundary pixels of a vessel in a fluoroscopic image. A cross-segment classifier is trained and used to detect cross-segments connecting the boundary pixels. A quadrilateral classifier is trained and used to detect quadrilaterals connecting the cross segments. Dynamic programming is then used to combine the quadrilaterals to generate a tubular structure representing the vessel.
摘要:
A virtual map of vessels of interest in medical procedures, such as coronary angioplasty is created so that doses of contrasting agent given to a patient may be reduced. A position of a coronary guidewire is determined and locations of vessel boundaries are found. When the contrast agent has dissipated, virtual maps of the vessels are created as new images. The locations of the determined vessel boundaries are imported to a mapping system and an image obtained without using a contrast agent is modified based on the imported locations of vessel boundaries. This creates a virtual map of the vessels.
摘要:
A method and system for vessel segmentation in fluoroscopic images is disclosed. Hierarchical learning-based detection is used to perform the vessel segmentation. A boundary classifier is trained and used to detect boundary pixels of a vessel in a fluoroscopic image. A cross-segment classifier is trained and used to detect cross-segments connecting the boundary pixels. A quadrilateral classifier is trained and used to detect quadrilaterals connecting the cross segments. Dynamic programming is then used to combine the quadrilaterals to generate a tubular structure representing the vessel.
摘要:
A method and system for tracking a guidewire in a fluoroscopic image sequence is disclosed. In order to track a guidewire in a fluoroscopic image sequence, guidewire segments are detected in each frame of the fluoroscopic image sequence. The guidewire in each frame of the fluoroscopic image sequence is then detected by rigidly tracking the guidewire from a previous frame of the fluoroscopic image sequence based on the detected guidewire segments in the current frame. The guidewire is then non-rigidly deformed in each frame based on the guidewire position in the previous frame.
摘要:
A method and system for tracking a guidewire in a fluoroscopic image sequence is disclosed. In order to track a guidewire in a fluoroscopic image sequence, guidewire segments are detected in each frame of the fluoroscopic image sequence. The guidewire in each frame of the fluoroscopic image sequence is then detected by rigidly tracking the guidewire from a previous frame of the fluoroscopic image sequence based on the detected guidewire segments in the current frame. The guidewire is then non-rigidly deformed in each frame based on the guidewire position in the previous frame.
摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A method for online optimization of guidewire visibility in fluoroscopic images includes providing an digitized image acquired from a fluoroscopic imaging system, the image comprising an array of intensities corresponding to a 2-dimensional grid of pixels, detecting a guidewire in the fluoroscopic image, enhancing the visibility of the guidewire in the fluoroscopic image, calculating a visibility measure of the guidewire in the fluoroscopic image, and readjusting acquisition parameters of the fluoroscopic imaging system wherein the guidewire visibility is improved.
摘要:
A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.