Abstract:
Various embodiments may provide an apparatus for maintaining a pressure different from atmospheric pressure. The apparatus may include a plurality of structural members coupled together to at least partially define a space which is configured to have a pressure different from atmospheric pressure, a structural member of the plurality of structural members being a support structure having an array of holes. The apparatus may also include a film covering a surface of the support structure having an array of holes. The film maybe adapted to allow a predetermined range of wavelengths of electromagnetic waves to pass through.
Abstract:
There is provided a method of detecting defects in an object based on active thermography, the method including heating a surface of the object at a plurality of localized regions thereof, selecting at least one of the localized regions as a reference region, selecting at least another one of the localized regions as a comparison region, comparing a thermal response at the comparison region to a thermal response at the reference region due to the heating, and determining whether the object has a defect based on the comparison. There is also provided a corresponding system for detecting defects in an object.
Abstract:
Various embodiments may relate to a radiant cooler. The radiant cooler may include a chamber. The radiant cooler may also include a vacuum pump connected to the chamber. The radiant cooler may further include an infrared absorber arranged within the chamber. A wall of the chamber may be configured to allow at least a portion of infrared light to pass through. The vacuum pump may be configured to generate a vacuum in the chamber. The infrared absorber may include a fluid, i.e. a liquid, configured to evaporate into the vacuum upon receiving thermal energy from at least the portion of infrared light.
Abstract:
There is provided a method of detecting defects in an object based on active thermography, the method including heating a surface of the object at a plurality of localized regions thereof, selecting at least one of the localized regions as a reference region, selecting at least another one of the localized regions as a comparison region, comparing a thermal response at the comparison region to a thermal response at the reference region due to the heating, and determining whether the object has a defect based on the comparison. There is also provided a corresponding system for detecting defects in an object.
Abstract:
Various embodiments may relate to a radiant cooler. The radiant cooler may include a chamber. The radiant cooler may also include a vacuum pump connected to the chamber. The radiant cooler may further include an infrared absorber arranged within the chamber. A wall of the chamber may be configured to allow at least a portion of infrared light to pass through. The vacuum pump may be configured to generate a vacuum in the chamber. The infrared absorber may include a fluid, i.e. a liquid, configured to evaporate into the vacuum upon receiving thermal energy from at least the portion of infrared light.
Abstract:
The present disclosure provides a method of collecting, including condensing, vapour of a polar fluid inside a liquid that is subjected to continuous flow in a process system, the liquid having a low vapour pressure (i.e. non-volatile) and being a non-polar liquid. The collection of the vapour, by condensation, occurs via four transition steps: (1) vapour (e.g. vapour of water) transferring sensible heat to the liquid (e.g. oil), (2) bubbles containing vapour collapse and become water in hot oil, (3) dissolved vapour liquefies through heat removal at elevated temperatures, and (4) oil and water are separated due to the difference in polarity between the polar fluid and the non-volatile non-polar liquid. The present method converts low grade (i.e. low temperature) waste heat into high grade heat source suitable for efficient heat rejection or heat recovery applications. An apparatus for collecting vapour of a polar fluid in a non-volatile non-polar liquid is also provided.
Abstract:
In various embodiments, a system for detecting a defective sample may be provided. The system may include a chamber. The system may further include a pressure reducing mechanism coupled with the chamber. The system may additionally include a detector. The pressure reducing mechanism may be configured to reduce a pressure in the chamber. The detector may be configured to detect information indicating a temperature of the sample. Various embodiments may be capable of detecting water ingress or fluid ingress into the micro cracks or along the designed discontinuities, like bolts and rivets.