摘要:
In one embodiment, a packet switching device creates multiple virtual packet switching devices within the same physical packet switching device using virtual machines and sharing particular physical resources of the packet switching device. One embodiment uses this functionality to change the operating version (e.g., upgrade or downgrade) of the packet switching device by originally operating according to a first operating version, operating according to both a first and second operating version, and then ceasing operating according to the first operating version. Using such a technique, a packet switching device can be upgraded or downgraded while fully operating (e.g., without having to reboot line cards and route processing engines).
摘要:
In one embodiment, a packet switching device creates multiple virtual packet switching devices within the same physical packet switching device using virtual machines and sharing particular physical resources of the packet switching device. One embodiment uses this functionality to change the operating version (e.g., upgrade or downgrade) of the packet switching device by originally operating according to a first operating version, operating according to both a first and second operating version, and then ceasing operating according to the first operating version. Using such a technique, a packet switching device can be upgraded or downgraded while fully operating (e.g., without having to reboot line cards and route processing engines).
摘要:
In one embodiment, a packet switching device creates multiple virtual packet switching devices within the same physical packet switching device using virtual machines and sharing particular physical resources of the packet switching device. One embodiment uses this functionality to change the operating version (e.g., upgrade or downgrade) of the packet switching device by originally operating according to a first operating version, operating according to both a first and second operating version, and then ceasing operating according to the first operating version. Using such a technique, a packet switching device can be upgraded or downgraded while fully operating (e.g., without having to reboot line cards and route processing engines).
摘要:
In one embodiment, a packet switching device creates multiple virtual packet switching devices within the same physical packet switching device using virtual machines and sharing particular physical resources of the packet switching device. One embodiment uses this functionality to change the operating version (e.g., upgrade or downgrade) of the packet switching device by originally operating according to a first operating version, operating according to both a first and second operating version, and then ceasing operating according to the first operating version. Using such a technique, a packet switching device can be upgraded or downgraded while fully operating (e.g., without having to reboot line cards and route processing engines).
摘要:
In one embodiment, a physical device (e.g., packet switching device, computer, server) is booted using custom-created frozen partially-booted virtual machines, avoiding the time required for an end-to-end boot process. In one embodiment while the system is operating under a current version, a partially-booted virtual image of a new operating version for each of multiple processing elements of the device is produced according to static configuration information specific to the device, with each of these partially-booted virtual machines frozen. The device is rebooted to a fully operational device by unfreezing these partially-booted virtual machines, thus removing this portion of a boot process from the real-time booting of the device. The generation of the frozen partially-booted virtual machines is advantageously performed by the device itself based on current static configuration information and the availability of the specific hardware configuration of the device.
摘要:
In one embodiment, a physical device (e.g., packet switching device, computer, server) is booted using custom-created frozen partially-booted virtual machines, avoiding the time required for an end-to-end boot process. In one embodiment while the system is operating under a current version, a partially-booted virtual image of a new operating version for each of multiple processing elements of the device is produced according to static configuration information specific to the device, with each of these partially-booted virtual machines frozen. The device is rebooted to a fully operational device by unfreezing these partially-booted virtual machines, thus removing this portion of a boot process from the real-time booting of the device. The generation of the frozen partially-booted virtual machines is advantageously performed by the device itself based on current static configuration information and the availability of the specific hardware configuration of the device.
摘要:
A service is applied in a packet switching device to both directions of a flow of packets through the packet switching device, with the application of this Layer-4 to layer-7 service to one direction requiring state information shared from the application of the service to packets traversing in the other direction. The service (e.g. firewall, network address translation) can be applied by different processing complexes which do not share memory; thus, state information is communicated between the processing complexes. When the service is applied by a single processing complex, packets can be directed explicitly to the single processing complex. The inline application of services in a packet switching system typically eliminates the need to change a packet's path through the packet switching system to that through a dedicated application server, and may eliminate the need for a dedicated services card or blade server.
摘要:
A service is applied in a packet switching device to both directions of a flow of packets through the packet switching device, with the application of this Layer-4 to layer-7 service to one direction requiring state information shared from the application of the service to packets traversing in the other direction. The service (e.g. firewall, network address translation) can be applied by different processing complexes which do not share memory; thus, state information is communicated between the processing complexes. When the service is applied by a single processing complex, packets can be directed explicitly to the single processing complex. The inline application of services in a packet switching system typically eliminates the need to change a packet's path through the packet switching system to that through a dedicated application server, and may eliminate the need for a dedicated services card or blade server.
摘要:
A data processing architecture includes multiple processors connected in series between a load balancer and reorder logic. The load balancer is configured to receive data and distribute the data across the processors. Appropriate ones of the processors are configured to process the data. The reorder logic is configured to receive the data processed by the processors, reorder the data, and output the reordered data.
摘要:
A buffer memory may be configured to temporarily store data in a number of queues. A processor may be configured to measure a fullness of the buffer memory. The processor may also be configured to assign sizes to the number of queues based on the fullness of the buffer memory. The processor may also adjust thresholds of drop profiles associated with the number of queues based on the sizes assigned to the number of queues.