摘要:
A rare earth fluoride solid solution material (polycrystal and/or single crystal) characterized in that the material is obtained by mutually combining a plurality of rare earth fluorides having phase transitions and having different ion radii, respectively, so that the rare earth fluoride solid solution material is free of phase transitions. A rare earth fluoride solid solution material (polycrystal and/or single crystal) characterized in that the material is represented by (REyRE′1-y)F3 (0.0000
摘要:
A rare earth fluoride solid solution material (polycrystal and/or single crystal) characterized in that the material is obtained by mutually combining a plurality of rare earth fluorides having phase transitions and having different ion radii, respectively, so that the rare earth fluoride solid solution material is free of phase transitions. A rare earth fluoride solid solution material (polycrystal and/or single crystal) characterized in that the material is represented by (REyRE′1−y)F3 (0.0000
摘要:
The present invention provides an oxide-base scintillator single crystal having an extremely large energy of light emission, adoptable to X-ray CT and radioactive ray transmission inspection apparatus, and more specifically to provide a Pr-containing, garnet-type oxide single crystal, a Pr-containing perovskite-type oxide single crystal, and a Pr-containing silicate oxide single crystal allowing detection therefrom light emission supposedly ascribable to 5d-4f transition of Pr.
摘要:
The present invention provides an oxide-base scintillator single crystal having an extremely large energy of light emission, adoptable to X-ray CT and radioactive ray transmission inspection apparatus, and more specifically to provide a Pr-containing, garnet-type oxide single crystal, a Pr-containing perovskite-type oxide single crystal, and a Pr-containing silicate oxide single crystal allowing detection therefrom light emission supposedly ascribable to 5d-4f transition of Pr.
摘要:
The garnet-type crystal for a scintillator of the present invention is represented by General Formula (1), (2), or (3), Gd3-x-yCexREyAl5-zGazO12 (1) wherein in Formula (1), 0.0001≦x≦0.15, 0≦y≦0.1, 2
摘要翻译:用于本发明的闪烁器的石榴石型晶体由通式(1),(2)或(3)代表,Gd 3-x-yCex RE y Al 5-z Ga z O 12(1)其中在式(1)中,0.0001& x和nlE; 0.15,0和nlE; y≦̸ 0.1,2
摘要:
The garnet-type crystal for a scintillator of the present invention is represented by General Formula (1), (2), or (3), Gd3-x-yCexREyAl5-zGazO12 (1) wherein in Formula (1), 0.0001≦x≦0.15, 0≦y≦0.1, 2
摘要翻译:用于本发明的闪烁体的石榴石型晶体由通式(1),(2)或(3)Gd3-x-yCexREyAl5-zGazO12(1)表示,其中在式(1)中,0.0001×x @ 0.15,0 @ y @ 0.1,2
摘要:
An electric signal produced by a photo-electric conversion element(104) is input to a comparator (120). The comparator (120) judges whether the electric signal output from the amplifier (110) exceeds a reference voltage or not, and outputs a HIGH signal if “exceeds”. A reference voltage modifier unit (130) elevates the reference voltage, after a predetermined time period elapses since the comparator (120) judged that the electric signal reached or exceeded the reference voltage. The signal processor calculates an incidence time which represents a time when the signal light starts to enter the photo-electric converter unit (100), by correcting a rise-up time of the electric signal when it reaches or exceeds the reference voltage, based on a pulse width which represents a time period from when the electric signal exceeds the reference voltage, up to when the electric signal falls below the reference voltage.
摘要:
An electric signal produced by a photo-electric conversion element (104) is input to a comparator (120). The comparator (120) judges whether the electric signal output from the amplifier (110) exceeds a reference voltage or not, and outputs a HIGH signal if “exceeds”. A reference voltage modifier unit (130) elevates the reference voltage, after a predetermined time period elapses since the comparator (120) judged that the electric signal reached or exceeded the reference voltage. The signal processor calculates an incidence time which represents a time when the signal light starts to enter the photo-electric converter unit (100), by correcting a rise-up time of the electric signal when it reaches or exceeds the reference voltage, based on a pulse width which represents a time period from when the electric signal exceeds the reference voltage, up to when the electric signal falls below the reference voltage.