摘要:
A circuit having a combined level conversion and logic function (37, 90, 101, 102, and 103) receives a differential CMOS level input signal, and an input signal having a relatively small logic swing, performs a logic operation, and provides a single-ended CMOS output signal. The circuit (37) includes a CMOS switching portion (71) and a small signal switching portion (75) connected to provide a CMOS output signal that is the result of a logical operation of the input signals. The circuits (37, 90, 101, 102, and 103), eliminate the need for a separate level converter, reducing at least a gate delay, and insuring faster generation of the output signal. Also, the use of the circuit (37) having a combined level conversion and logic function allows the cache TAG (20) to provide read data at the same time that a match signal is generated.
摘要:
An integrated circuit memory having a plurality of memory cells, output timing control means including frequency measurement means providing a frequency measurement count corresponding to a first frequency of the external clock signal and delay control means generating a delayed clock signal at the first frequency, wherein the delayed clock signal is delayed in time from the external clock signal in proportion to the first frequency, and data output control means outputting data from the plurality of memory cells responsive to the delayed clock signal. A method for adjusting output timing in a memory device including the steps of receiving an external clock signal, measuring a frequency of the external clock signal, generating a frequency count, determining an output delay proportional to the frequency, and generating an output clock at the external frequency and delayed from the external clock signal in proportion to the frequency.
摘要:
A pipelined dual port integrated circuit memory (20) includes an array (30) of static random access memory (SRAM) cells. A control circuit (32) controls access to the memory cells, where substantially simultaneous requests for access are serviced sequentially within a single cycle of a clock signal of a data processor that is accessing the memory (20). An address collision detector (110) uses both a differential amplifier (360) included within a D-flip-flop circuit (114) and a reference voltage provided by a reference voltage circuit (365) to compare addresses provided to the two ports, and generates a match signal that is used for determining which of the two ports are serviced first, independent of which port is read from, or written to. Because dual port functionality is obtained using a single port SRAM array (30), the memory (20) may be manufactured using relatively less integrated circuit surface area, and therefore at a lower cost.
摘要:
Method and apparatus for amplifying a signal (50) to produce a latched digital signal (46). In one embodiment, an output stage circuit (24) of memory (10) includes a differential amplifier circuit (100), a level converter (102), a timing circuit (104), a clock-free latch (106), a high impedance control circuit (108), a high impedance control circuit (110), and an output driver (112). Output stage (24) requires one clock signal to function. Alternate embodiments may skew the disabling edge of the clock to improve the speed characteristics of output stage (24). In one embodiment, signal (50) is a differential pair of signals provided from a memory bit cell array (12).
摘要:
A pipelined dual port integrated circuit memory (20) includes an array (21) of static random access memory (SRAM) cells, wherein each of the memory cells (80) is connected to a single word line (72) and to a single bit line pair (74, 76). Each port's access is performed synchronously with respect to a corresponding clock signal. The two clock signal signals are asynchronous with respect to each other. When access requests are received from both ports substantially simultaneously, an arbitration circuit (24) determines which port receives priority. The port which receives priority accesses the array (21) first. The arbitration circuit (24) ensures that substantially simultaneous access requests are serviced sequentially and occur within a single cycle of a corresponding clock signal.
摘要:
A pipelined dual port integrated circuit memory (20) includes an array (30) of static random access memory (SRAM) cells, where each of the memory cells (80) is connected to a single word line (72) and to a single bit line pair (74, 76). A control circuit (32) controls access to the memory cells, where substantially simultaneous requests for access are serviced sequentially within a single cycle of a clock signal of a data processor that is accessing the memory (20). An address collision detector (110) compares addresses provided to the two ports, and generates a match signal that is used for determining which of the two ports are serviced first, independent of which port is read from, or written to. Because dual port functionality is obtained using a single port SRAM array (30), the memory (20) may be manufactured using relatively less integrated circuit surface area, and therefore at a lower cost.
摘要:
A balanced twist design for differential small signal pairs which is balanced in terms of resistance, capacitance and process variance. In the twist design of the present invention, each routing (6, 10) passes through two layers of metal. In addition, each routing (6, 10) passes through the same number of vias (9, 13, 14, 15), and experiences the same number of bends. Each routing (6, 10) is also exposed to the same sidewall crosstalk since the length and width of each routing (6, 10) in both metal layers is approximately the same. As a result, the new twist design reduces signal degradation, enhances signal separation, and allows increased clock speed of the integrated circuit.