Abstract:
In one embodiment, an optical receiver has a bulk dispersion compensator and a butterfly equalizer serially connected to one another to perform dispersion-compensation processing and electronic polarization de-multiplexing. The bulk dispersion compensator has a relatively large dispersion-compensation capacity, but is relatively slow and operates in a quasi-static configuration. The butterfly equalizer has a relatively small dispersion-compensation capacity, but can be dynamically reconfigured on a relatively fast time scale to track the changing conditions in the optical-transport link. The optical receiver has a feedback path that enables the configuration of the bulk dispersion compensator to be changed based on the configuration of the butterfly equalizer in a manner that advantageously enables the receiver to tolerate larger amounts of chromatic dispersion and/or polarization-mode dispersion than without the use of the feedback path.
Abstract:
Proposed is a method of decoding a differentially encoded PSK modulated optical data signal carrying FEC encoded data values. The optical signal is corrected by an estimated phase offset. From the corrected signal, respective likelihood values for the FEC encoded data values are derived, using an estimation algorithm which accounts for a differential encoding rule used for differentially encoding the optical signal. The derived likelihood values are limited to a predetermined range of values. From the limited likelihood values, FEC decoded data values are derived, using an algorithm which accounts for a FEC encoding rule used for FEC encoding the FEC encoded data values.
Abstract:
The embodiments of the invention relate to a line switching component separable from a line card of a network node. The line switching component contains at least one input port for receiving an optical input signal from an optical transport network and at least one output port for transmitting an optical output signal to the optical transport network. The line switching component further contains at least one further output port configured to be connected to an input port of at least one optical interface of the line card and at least one further input port configured to be connected to an output port of the at least one further optical interface of the line card. The line switching component further contains a switchable optical path system configured to operate the line switching component in a first operation mode and to operate the line switching component in a second operation mode.
Abstract:
Embodiments relate to an apparatus for a regenerative network node between a first and a second link portion. The apparatus comprises an input configured to receive, from the first link portion, a signal impaired by the first link portion, the signal including a data packet with a Forward Error Correction (FEC) encoded payload portion and a header portion. The apparatus comprises a signal regeneration unit configured to mitigate signal impairments of the first link portion to provide a regenerated FEC encoded payload portion. The apparatus comprises a processing unit configured to extract destination information in the data packet's header portion. If extracted destination information indicates that the data packet's destination is the regenerative network node, the data packet's regenerated FEC encoded payload portion is forwarded to a decoding unit of the regenerative network node. Else, the data packet's regenerated FEC encoded payload portion is forwarded to the second link portion.
Abstract:
In order to provide very fast tuning of an coherent optical receiver, an apparatus for use in optical telecommunications includes a coherent optical receiver with a converter stage adapted to convert a received optical signal to an electrical signal by down-converting the received optical signal in frequency using a local oscillator signal, an analog/digital converter stage adapted to sample the converted signal, a digital processor adapted to process the sampled signal to restore a transmitted data signal, and a wavelength selector adapted to select from a distribution network an unmodulated light signal at a configurable wavelength for use as the local oscillator signal. The distribution network is an optical bus system in the form of a fiber ring.