Abstract:
A laser communication system and method are disclosed. The laser communication system includes a laser receiver system to receive a frequency-shift keyed (FSK) optical signal encoded with a plurality of data signals. The laser receiver system including an FSK differential detection system that includes a plurality of differential detection filters that can each receive the FSK optical signal and generate an output. The FSK differential detection system can demodulate the FSK optical signal into a multi-bit digital code corresponding to a frequency of the FSK optical signal based on the output of each of the plurality of differential detection filters.
Abstract:
A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.
Abstract:
A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.
Abstract:
A laser communication system and method are disclosed. The laser communication system includes a laser receiver system to receive a frequency-shift keyed (FSK) optical signal encoded with a plurality of data signals. The laser receiver system including an FSK differential detection system that includes a plurality of differential detection filters that can each receive the FSK optical signal and generate an output. The FSK differential detection system can demodulate the FSK optical signal into a multi-bit digital code corresponding to a frequency of the FSK optical signal based on the output of each of the plurality of differential detection filters.
Abstract:
A field concentrating surface enhanced Raman spectroscopy (SERS) platform includes a signal amplifying material and a pattern of apertures extending through the signal amplifying material. The pattern of apertures includes a central aperture, and a plurality of radiation capturing apertures positioned around the central aperture. Each of the radiation capturing apertures has a diameter that is larger than a diameter of the central aperture. The platform further includes a substrate that supports the signal amplifying material and a channel that extends through the substrate. The channel is at least partially aligned with the central aperture that extends through the signal amplifying material.
Abstract:
The present invention provides a system and method of optical communications that utilize coherent detection technique and optical orthogonal frequency division multiplexing for phase encoded data transmission. In particular the invention addresses a device and method for digital polarization compensation of optical signals with up to 100 Gb/s transmission rate received via an optical link. The polarization compensation operates in two modes: acquisition mode and tracking mode. The polarization recovery is performed at the receiver side using the received digital signal conversion into frequency domain and separate reconstruction of the polarization state in each spectral component.
Abstract:
The present invention discloses a transmitter and receiver for optical communications system, which provide compensation of the optical link nonlinearity. M-PSK modulating is used for data embedding in an optical signal in each WDM channel using orthogonal frequency division multiplexing (OFDM) technique. At the receiver side electrical output signals from a coherent optical receiver are processed digitally with the link nonlinearity compensation. It is followed by the signal conversion into frequency domain and information recovery from each subcarrier of the OFDM signal. At the transmitter side an OFDM encoder provides a correction of I and Q components of a M-PSK modulator driving signal to compensate the link nonlinearity prior to sending the optical signal to the receiver.
Abstract:
The present invention discloses a transmitter and receiver for optical communications system, which provide compensation of the optical link nonlinearity. M-PSK modulating is used for data embedding in an optical signal in each WDM channel using orthogonal frequency division multiplexing (OFDM) technique. At the receiver side electrical output signals from a coherent optical receiver are processed digitally with the link nonlinearity compensation. It is followed by the signal conversion into frequency domain and information recovery from each subcarrier of the OFDM signal. At the transmitter side an OFDM encoder provides a correction of I and Q components of a M-PSK modulator driving signal to compensate the link nonlinearity prior to sending the optical signal to the receiver.
Abstract:
This invention provides a tunable delay of an optical signal having a carrier with an angular frequency ω0 and a single side band having a signal band with a median angular frequency ωr. The delay line comprises at least a first, a second and a third integrated resonators coupled sequentially to a waveguide. The first and the second resonators have angular resonant frequencies ω1=ωrΔω and ω2=ωr+Δω respectively, where Δω is a deviation from the median frequency. The third resonator provides a phase delay difference between the phase at the optical carrier ω0 and the phase at the median frequency (Or equal to (ωr−ω0)Td, where Td is the time delay. The device provides an equal group delay to all frequency components in the output signal and also equal phase delay for all frequency components of an RF signal when the optical signal is downconverted at a photodetector. The device may find applications controlling the time delay to antenna elements in a phased array system.
Abstract:
An image recording and readout device has a light-stimulable phosphor layer for storing a radiation image. The image is read out of the phosphor layer by scanning the layer with a laser beam. A filter is provided between the phosphor layer and the laser to increase the coupling of the laser light into the phosphor layer. The filter passes stimulating laser radiation within an angular acceptance range and reflects stimulating radiation outside the acceptance range.