摘要:
A parallel interference cancellation (PIC) receiver incrementally removes interference from signals in parallel modules in successive stages. For each desired signal, as interfering signals are removed, corresponding updates to a data covariance matrix are modeled as computationally tractable rank-one updates to a root matrix of the covariance matrix. Processing of signals and/or covariance information may be initiated, continued, and/or halted at various stages, e.g., in response to signal or data quality. The PIC receiver using root matrix updates is applicable to a variety of demodulation techniques.
摘要:
A parallel interference cancellation (PIC) receiver incrementally removes interference from signals in parallel modules in successive stages. For each desired signal, as interfering signals are removed, corresponding updates to a data covariance matrix are modeled as computationally tractable rank-one updates to a root matrix of the covariance matrix. Processing of signals and/or covariance information may be initiated, continued, and/or halted at various stages, e.g., in response to signal or data quality. The PIC receiver using root matrix updates is applicable to a variety of demodulation techniques.
摘要:
Methods and apparatus for processing a composite communication signal comprising two or more received signals of interest are disclosed. An interference-suppressing receiver, which may comprise a G-Rake receiver or a linear chip equalizer, utilizes a square-root covariance matrix in processing received signals, where the square-root covariance matrix represents impairment covariance or data covariance for the composite communication signal. In an exemplary method, a receiver detects symbols, corresponding to a signal of interest, from the composite communication signal, using processing weights calculated from a square-root covariance matrix and a net channel response for the signal of interest. The method further comprises calculating a reconstructed version of the signal of interest from the detected first symbols, generating an updated communication signal by subtracting the reconstructed version of the first signal of interest from the composite communication signal, and updating the square-root covariance matrix to obtain an updated square-root covariance matrix.
摘要:
A method and apparatus in a radio receiver for canceling interference from a high power, high data rate signal received in a combined signal that includes a contribution from the high power signal and a contribution from a lower power signal. It is first determined whether the high power signal was correctly received. A CRC checksum may be used to determine whether the high power signal was received with a good reliability. Thereafter, the contribution of the high power signal is removed from the received signal only if the high power signal was correctly received. The contribution of the high power signal may be removed by hard-subtracting the contribution of the high power signal from the received signal if all of the bits of the checksum are correct, and soft-subtracting the contribution of the high power signal from the received signal if most, but not all, of the bits in the checksum are correct.
摘要:
Methods and apparatus for processing a composite communication signal comprising two or more received signals of interest are disclosed. An interference-suppressing receiver, which may comprise a G-Rake receiver or a linear chip equalizer, utilizes a square-root covariance matrix in processing received signals, where the square-root covariance matrix represents impairment covariance or data covariance for the composite communication signal. In an exemplary method, a receiver detects symbols, corresponding to a signal of interest, from the composite communication signal, using processing weights calculated from a square-root covariance matrix and a net channel response for the signal of interest. The method further comprises calculating a reconstructed version of the signal of interest from the detected first symbols, generating an updated communication signal by subtracting the reconstructed version of the first signal of interest from the composite communication signal, and updating the square-root covariance matrix to obtain an updated square-root covariance matrix.
摘要:
The computational complexity required for interference suppression in the reception of wireless communications from multiple users is reduced by sharing information among the users. In some situations, information indicative of a statistical characteristic of the interference is shared among the users. Delays used to produce the interference statistic information are determined based on rake finger delays employed by the users. In some situations, a parameter estimate that is used to calculate combining weights for the users is shared among the users.
摘要:
The computational complexity required for interference suppression in the reception of wireless communications from multiple users is reduced by sharing information among the users. In some situations, information indicative of a statistical characteristic of the interference is shared among the users. Delays used to produce the interference statistic information are determined based on rake finger delays employed by the users. In some situations, a parameter estimate that is used to calculate combining weights for the users is shared among the users.
摘要:
A Direct-Sequence Code Division Multiple Access (DS-CDMA) receiver and method of allocating probing correlators and combining correlators (fingers). A front-end processor converts received radio signals to baseband samples. Based on average path strengths, a controller adaptively allocates probing correlators to signal paths to de-spread certain received signals. Based on path power estimates, the controller adaptively allocates combining correlators to signal paths. The allocations may be made to minimize the total received power at the receiver, or to achieve acceptable performance for all users.
摘要:
A receiver based on a RAKE receiver architecture includes a logic circuit configured to assign one or more RAKE fingers to a finger placement grid that is independent from a searcher delay grid used by the receiver's searcher in generating multipath delay profiles for received signals. The logic circuit may use the multipath delay profile to “tune” the finger placement grid relative to the searcher delay grid but the delay resolution of the finger placement grid is independent of the searcher delay grid. This independence permits, for example, setting the finger placement grid to a delay resolution based on a Nyquist criterion independently from the delay resolution used by the searcher. The receiver may use two or more finger placement grids, may operate in a mixed mode where fingers are assigned on- and off-grid, and may operate selectively in grid or non-grid modes.
摘要:
The present application describes a new path search and verification method and apparatus for identifying and selecting one or more delays for a receiver. A front-end receiver receives a signal having one or more signal images, where each signal image has a corresponding signal delay. A tree generator builds a hierarchical delay tree from a plurality of delay nodes, each corresponding to one of the signal delays. A tree searcher searches through the delay tree to identify one or more surviving delay nodes, where each surviving delay node corresponds to a candidate delay for the receiver. The receiver may also include a state machine comprising a plurality of ordered states for providing candidate delays for the receiver. The state machine stores the candidate delays and shifts the candidate delays between states within the state machine based on the latest results from the tree searcher.