摘要:
Embodiments of the present invention enable fault detection in a printed dot-pattern image. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, a generated distortion map is based on a comparison of a reconstructed dot-pattern image, a simulated reference bitmap, and an error map representing differences between the reconstructed dot-pattern image and the reference bitmap. In embodiments, the pixels of the distortion map are color coded to identify the locations and types of aberrations that were discovered as a result of the comparison.
摘要:
Embodiments of the present invention enable fault detection in a printed dot-pattern image. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, a generated distortion map is based on a comparison of a reconstructed dot-pattern image, a simulated reference bitmap, and an error map representing differences between the reconstructed dot-pattern image and the reference bitmap. In embodiments, the pixels of the distortion map are color coded to identify the locations and types of aberrations that were discovered as a result of the comparison.
摘要:
Embodiments of the present invention enable fault detection in a printed dot-pattern image. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, a generated distortion map is based on a comparison of a reconstructed dot-pattern image, a simulated reference bitmap, and an error map representing differences between the reconstructed dot-pattern image and the reference bitmap. In embodiments, the pixels of the distortion map are color coded to identify the locations and types of aberrations that were discovered as a result of the comparison.
摘要:
Embodiments of the present invention enable fault detection in a printed dot-pattern image. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, a generated distortion map is based on a comparison of a reconstructed dot-pattern image, a simulated reference bitmap, and an error map representing differences between the reconstructed dot-pattern image and the reference bitmap. In embodiments, the pixels of the distortion map are color coded to identify the locations and types of aberrations that were discovered as a result of the comparison.
摘要:
Embodiments of the present invention enable image capture, alignment, and registration. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, an image capture system comprising a camera and a two-dimensional surface supporting an image may be calibrated based on configuration parameters of an image to be captured and of a simulated reference bitmap based on the image. In embodiments, the position of the image to be captured on the two-dimensional surface is determined based on calibration parameters. In embodiments, a sequence of images may be captured of sections of an image that cannot be captured in a single scan. A scan path across the image may be determined that is based in part on calibration parameters. In embodiments, consistency of quality of captured images is maintained by validating selected characteristics of each image as it is being captured and by validating the alignment of each captured image with a corresponding simulated reference bitmap.
摘要:
Embodiments of the present invention enable image capture, alignment, and registration. Certain applications of the present invention are its use in various embodiments of a system for inspection of a printed circuit board (“PCB”) substrate. In embodiments, an image capture system comprising a camera and a two-dimensional surface supporting an image may be calibrated based on configuration parameters of an image to be captured and of a simulated reference bitmap based on the image. In embodiments, the position of the image to be captured on the two-dimensional surface is determined based on calibration parameters. In embodiments, a sequence of images may be captured of sections of an image that cannot be captured in a single scan. A scan path across the image may be determined that is based in part on calibration parameters. In embodiments, consistency of quality of captured images is maintained by validating selected characteristics of each image as it is being captured and by validating the alignment of each captured image with a corresponding simulated reference bitmap.
摘要:
Embodiments of the present invention disclose a telepresence portal system. According to one embodiment, the telepresence portal system includes a host portal having a plurality of host transparent displays arranged to face different sides of a host user. Furthermore, each host transparent display is associated with an image capturing device for capturing different viewpoint images of the host user. A remote portal is in communication with the host portal and includes a plurality of remote transparent displays arranged to correspond with the positions of the host transparent displays. In addition, each remote transparent display renders a viewpoint image of the host user on the corresponding remote transparent display for view by at least one remote user.
摘要:
In one aspect, a method includes capturing images of a first participant through a display using a camera. The display is located between the first participant and the camera. A video stream of images of a second participant is also received. The images of the second participant are shifted in accordance with a shift vector. The shift vector places the images of the second participant's face in approximate alignment with the eyes of the first participant and the lens of the camera. The shifted images are projected on the display using a projector.
摘要:
A method for presentation interaction. The method includes, receiving by a computer system an indication of a manual selection of a region proximate to an audience member of an audience wherein the indication is received via an interaction with a displayed image of the audience. The method also includes utilizing a microphone array communicatively coupled with a beam-forming component of the computer system to focus audio pickup from the region proximate to the audience member in response to receiving the indication. The method also includes displaying an enhanced image of the region proximate to the audience member using the computer system in response to receiving the indication.
摘要:
Embodiments of the present invention are directed to video-conferencing systems that create eye contact and accurate gaze awareness between video-conferencing participants. In one aspect, a method includes capturing images of a first participant through a display using a camera (801). The display is located between the first participant and the camera. A video stream encoding images of a second participant (802,905) is also received. The images of the second participant are shifted in accordance with a shift vector. The shift vector places the images of the second participant's face in approximate alignment with the eyes of the first participant and the lens of the camera (803). The shifted images are projected on the display using a projector (804).