摘要:
The disclosure relates to particle heaters for heating solid particles to store electrical energy as thermal energy. Thermal energy storage directly converts off-peak electricity into heat for thermal energy storage, which may be converted back to electricity, for example during peak-hour power generation. The particle heater is an integral part of an electro-thermal energy storage system, as it enables the conversion of electrical energy into thermal energy. As described herein, particle heater designs are described that provide efficient heating of solid particles in an efficient and compact configuration to achieve high energy density and low cost.
摘要:
Methods and devices for long-duration electricity storage using low-cost thermal energy storage and high-efficiency power cycle, are disclosed. In some embodiments it has the potential for superior long-duration, low-cost energy storage.
摘要:
A device is describe for collecting energy in electromagnetic radiation, where the device includes a first panel that includes a first height, a first end, and a second end such that a first length is defined between the first end and the second end. The device further includes a second panel that includes a second height, a third end, and a fourth end such that a second length is defined between the third end and the fourth end. In addition, the first height and the second height are substantially parallel to a reference axis, the first end and the third end intersect to form a leading edge that is substantially parallel to the reference axis, and the first panel and the second panel form a channel positioned between the first panel and the second panel. Further, the channel is configured for the flow of a first heat-transfer medium through the channel, and at least a part of the first panel and at least a part of the second panel are configured to absorb electromagnetic radiation to transfer energy from the electromagnetic radiation to the first heat-transfer medium.
摘要:
An aspect of the present disclosure is a receiver for receiving radiation from a heliostat array that includes at least one external panel configured to form an internal cavity and an open face. The open face is positioned substantially perpendicular to a longitudinal axis and forms an entrance to the internal cavity. The receiver also includes at least one internal panel positioned within the cavity and aligned substantially parallel to the longitudinal axis, and the at least one internal panel includes at least one channel configured to distribute a heat transfer medium.
摘要:
An aspect of the present disclosure is a method that includes, in a first mixture that includes a metal alkoxide and water, reacting at least a portion of the metal alkoxide and at least a portion of the water to form a second mixture that includes a solid metal oxide phase dispersed in the second mixture, applying the second mixture onto a surface of a device that includes an intervening layer adjacent to a perovskite layer such that the intervening layer is between the second mixture and perovskite layer, and treating the second mixture, such that the solid metal oxide phase is transformed to a first solid metal oxide layer such that the intervening layer is positioned between the first solid metal oxide layer and the perovskite layer.
摘要:
A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced in the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.
摘要:
The present disclosure relates to particle-based thermal energy storage (TES) systems employed for the heating and cooling applications for residential and/or commercial buildings. Particle-based TES systems may store thermal energy in the particles during off-peak times (i.e., when electricity demand and/or costs are relatively low) and remove the stored thermal energy for heating or cooling applications for buildings during peak times (i.e., when electricity demand and/or costs are relatively high).
摘要:
An aspect of the present disclosure is a receiver for receiving radiation from a heliostat array that includes at least one external panel configured to form an internal cavity and an open face. The open face is positioned substantially perpendicular to a longitudinal axis and forms an entrance to the internal cavity. The receiver also includes at least one internal panel positioned within the cavity and aligned substantially parallel to the longitudinal axis, and the at least one internal panel includes at least one channel configured to distribute a heat transfer medium.
摘要:
An aspect of the present disclosure is a receiver for receiving radiation from a heliostat array that includes at least one external panel configured to form an internal cavity and an open face. The open face is positioned substantially perpendicular to a longitudinal axis and forms an entrance to the internal cavity. The receiver also includes at least one internal panel positioned within the cavity and aligned substantially parallel to the longitudinal axis, and the at least one internal panel includes at least one channel configured to distribute a heat transfer medium.
摘要:
A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced in the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.