Abstract:
Structure mounted airbag assemblies and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present disclosure can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag assembly within the cavity, and an inflator operably coupled to the airbag assembly. The airbag assembly can include an airbag configured to deploy through the opening of the housing during a crash event. The airbag system can further include a door removably positioned across the opening and configured to move away from the opening during airbag deployment. The housing can be affixed to an interior portion of an aircraft, forward of and offset from an aircraft seat.
Abstract:
Airbag assemblies and associated systems and methods for use in aircraft and other vehicles are described herein that can provide crash protection for occupants seated in an upright position while not injuring or striking occupants in the brace position. An airbag system configured in accordance with an embodiment of the present technology can include an airbag configured to deploy through an opening of a housing during a crash event. The housing can be affixed to a seat or other interior portion (e.g., a fixed portion) of an aircraft forward of a passenger seat. The airbag can initially deploy in a direction away from an occupant in the seat and then move into position between a potential strike hazard and the occupant such that the airbag system can be used to protect occupants seated in an upright position while not injuring occupants in the brace position.
Abstract:
Structure mounted airbag assemblies and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present disclosure can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag assembly within the cavity, and an inflator operably coupled to the airbag assembly. The airbag assembly can include an airbag configured to deploy through the opening of the housing during a crash event. The airbag system can further include a door removably positioned across the opening and configured to move away from the opening during airbag deployment. The housing can be affixed to an interior portion of an aircraft, forward of and offset from an aircraft seat.
Abstract:
Structure mounted airbag assemblies and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present disclosure can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag assembly within the cavity, and an inflator operably coupled to the airbag assembly. The airbag assembly can include an airbag configured to deploy through the opening of the housing during a crash event. The airbag system can further include a door removably positioned across the opening and configured to move away from the opening during airbag deployment. The housing can be affixed to an interior portion of an aircraft, forward of and offset from an aircraft seat.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.
Abstract:
Structure mounted airbag assemblies and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present disclosure can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag assembly within the cavity, and an inflator operably coupled to the airbag assembly. The airbag assembly can include an airbag configured to deploy through the opening of the housing during a crash event. The airbag system can further include a door removably positioned across the opening and configured to move away from the opening during airbag deployment. The housing can be affixed to an interior portion of an aircraft, forward of and offset from an aircraft seat.
Abstract:
Airbag assemblies having sleeves and other flexible guide members and associated systems and methods are described herein. Airbag assemblies configured in accordance with some embodiments of the present technology can include a mounting bracket configured to be attached to a structure in an aircraft, such as a passenger seat back or a partition wall, adjacent to a component, such as a display screen. The airbag assemblies can further include an airbag and a guide sleeve attached to the mounting bracket. The airbag is configured to be inflated from a packed or stowed configuration to a deployed configuration. In the stowed configuration, the sleeve at least partially surrounds the airbag. Inflating the airbag to the deployed configuration causes the sleeve to extend between the airbag and at least a portion of the adjacent component to prevent the component or an associated opening from interfering with proper deployment of the airbag.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.
Abstract:
Airbag assemblies and associated systems and methods for use in aircraft and other vehicles are described herein that can provide crash protection for occupants seated in an upright position while not injuring or striking occupants in the brace position. An airbag system configured in accordance with an embodiment of the present technology can include an airbag configured to deploy through an opening of a housing during a crash event. The housing can be affixed to a seat or other interior portion (e.g., a fixed portion) of an aircraft forward of a passenger seat. The airbag can initially deploy in a direction away from an occupant in the seat and then move into position between a potential strike hazard and the occupant such that the airbag system can be used to protect occupants seated in an upright position while not injuring occupants in the brace position.