Abstract:
An imaging device may capture images of a scene, where the scene includes retroreflective materials. Where visual images and depth images are captured from a scene, and the depth images have ratios of supersaturated pixels that are less than a predetermined threshold, a location map of the scene is generated or updated based on the depth images. Where the ratios are greater than the predetermined threshold, the location map of the scene is generated or updated based on the visual images. Additionally, where each of a plurality of imaging devices detect concentrations of supersaturated pixels beyond a predetermined threshold or limit within their respective fields of view, an actor present on the scene may be determined to be wearing retroreflective material, or otherwise designated as a source of the supersaturation, and tracked with the scene based on coverage areas that are determined to have excessive ratios of supersaturated pixels.
Abstract:
This disclosure describes techniques for updating planogram data associated with a facility. The planogram may indicate, for different shelves and other inventory locations within the facility, which items are on which shelves. For example, the planogram data may indicate that a particular item is located on a particular shelf. Therefore, when a system identifies that a user has taken an item from that shelf, the system may update a virtual cart of that user to indicate addition of the particular item. In some instances, however, a new item may be stocked on the example shelf instead of a previous item. The techniques described herein may use sensor data generated in the facility to identify this change and update the planogram data to indicate an association between the shelf and the new item.
Abstract:
This disclosure describes techniques for updating planogram data associated with a facility. The planogram may indicate, for different shelves and other inventory locations within the facility, which items are on which shelves. For example, the planogram data may indicate that a particular item is located on a particular shelf. Therefore, when a system identifies that a user has taken an item from that shelf, the system may update a virtual cart of that user to indicate addition of the particular item. In some instances, however, a new item may be stocked on the example shelf instead of a previous item. The techniques described herein may use sensor data generated in the facility to identify this change and update the planogram data to indicate an association between the shelf and the new item.
Abstract:
An imaging device may capture images of a scene, where the scene includes retroreflective materials. Where visual images and depth images are captured from a scene, and the depth images have ratios of supersaturated pixels that are less than a predetermined threshold, a location map of the scene is generated or updated based on the depth images. Where the ratios are greater than the predetermined threshold, the location map of the scene is generated or updated based on the visual images. Additionally, where each of a plurality of imaging devices detect concentrations of supersaturated pixels beyond a predetermined threshold or limit within their respective fields of view, an actor present on the scene may be determined to be wearing retroreflective material, or otherwise designated as a source of the supersaturation, and tracked with the scene based on coverage areas that are determined to have excessive ratios of supersaturated pixels.
Abstract:
Aspects of the present disclosure relate to management of evaluated rule data sets. Specifically, a unreduced evaluated rule data set may contain a number of items to be compared or analyzed according to a number of rules, and may also contain the results of such analysis. An illustrative reduced evaluated data set can include the results of evaluated rules. When utilized in conjunction with an item data set and a rule data set, the information contained within the unreduced evaluated rule data set may be maintained. The reduce memory requirements of the reduced evaluated rule data set may facilitate storage of the reduced evaluated rule data set in faster to access memory, or may facilitate distributed computation of the reduced evaluated rule data set.
Abstract:
This disclosure describes techniques for updating planogram data associated with a facility. The planogram may indicate, for different shelves and other inventory locations within the facility, which items are on which shelves. For example, the planogram data may indicate that a particular item is located on a particular shelf. Therefore, when a system identifies that a user has taken an item from that shelf, the system may update a virtual cart of that user to indicate addition of the particular item. In some instances, however, a new item may be stocked on the example shelf instead of a previous item. The techniques described herein may use sensor data generated in the facility to identify this change and update the planogram data to indicate an association between the shelf and the new item.
Abstract:
Aspects of the present disclosure relate to management of evaluated rule data sets. Specifically, a unreduced evaluated rule data set may contain a number of items to be compared or analyzed according to a number of rules, and may also contain the results of such analysis. An illustrative reduced evaluated data set can include the results of evaluated rules. When utilized in conjunction with an item data set and a rule data set, the information contained within the unreduced evaluated rule data set may be maintained. The reduce memory requirements of the reduced evaluated rule data set may facilitate storage of the reduced evaluated rule data set in faster to access memory, or may facilitate distributed computation of the reduced evaluated rule data set.