Abstract:
A versatile beam scanner for generating a far-field scanned pencil beam, and, alternatively, a far-field pencil beam. An angle selector limits the angular extent of an inner fan beam emitted by a source of penetrating radiation. The source and angle selector may be translated, along a direction parallel to a central axis of a multi-aperture unit, in such a manner as to generate a scanned far-field pencil beam, when rings of apertures are interposed between the source and an inspected target, or, alternatively, a far-field fan beam, when no ring of apertures is interposed.
Abstract:
Systems and methods for inspecting an object with a scanned beam of penetrating radiation. Scattered radiation from the beam is detected, in either a backward or forward direction, as is radiation transmitted through the inspected object. The source of penetrating radiation is concealed within an enclosure of a road-worthy vehicle, and detected with a large-area uncollimated detector similarly concealed within the enclosure.
Abstract:
A system and method for inspecting a vehicle by means of one or more sources and detectors of penetrating radiation. The source(s) and detector(s) are carried on a mobile conveyance and deployed at a point of operation. One source swings away from the conveyance on a deployable member, such as a boom, such that the source can irradiate a vehicle from above or below. A detector deploys outwardly from the mobile conveyance, remaining mechanically coupled to the mobile conveyance in a position in a horizontal plane, such that the detector intercepts penetrating radiation from the source positioned above the inspected vehicle, which penetrating radiation has interacted with the inspected vehicle. A ramp may be provided to allow the inspected vehicle to be driven to a position between the vertically irradiating source and a transmission detector.
Abstract:
Systems and methods for detecting clandestine fissile or radioactive material on the basis of emitted radiation and particles (such as neutrons and alpha particles) arising from within the material. Emission by the fissile or radioactive material is detected in conjunction with a conventional x-ray imaging system that includes an external source of illuminating penetrating radiation, at least one detector configured to detect at least the penetrating radiation and to generate a detector signal, and a processor configured as a detector signal discriminator to generate an output indicating whether the detector signal is triggered by an origin other than illuminating penetrating radiation. Active and passive modes of detection are described by some embodiments. Other embodiments are directed toward neutron detection, gamma ray detection with energy resolution, and designs of detectors to enhance the detection of clandestine nuclear material.
Abstract:
Systems and methods for detecting clandestine fissile or radioactive material on the basis of emitted radiation and particles (such as neutrons and alpha particles) arising from within the material. Emission by the fissile or radioactive material is detected in conjunction with a conventional x-ray imaging system that includes an external source of illuminating penetrating radiation, at least one detector configured to detect at least the penetrating radiation and to generate a detector signal, and a processor configured as a detector signal discriminator to generate an output indicating whether the detector signal is triggered by an origin other than illuminating penetrating radiation. Active and passive modes of detection are described by some embodiments. Other embodiments are directed toward neutron detection, gamma ray detection with energy resolution, and designs of detectors to enhance the detection of clandestine nuclear material.
Abstract:
Systems and methods for detecting clandestine fissile or radioactive material on the basis of emitted radiation and particles (such as neutrons and alpha particles) arising from within the material. Emission by the fissile or radioactive material is detected in conjunction with a conventional x-ray imaging system that includes an external source of illuminating penetrating radiation, at least one detector configured to detect at least the penetrating radiation and to generate a detector signal, and a processor configured as a detector signal discriminator to generate an output indicating whether the detector signal is triggered by an origin other than illuminating penetrating radiation. Active and passive modes of detection are described by some embodiments. Other embodiments are directed toward neutron detection, gamma ray detection with energy resolution, and designs of detectors to enhance the detection of clandestine nuclear material.
Abstract:
A method for imaging a target with an x-ray scatter apparatus. Air scatter from air intervening between the x-ray scatter apparatus and a target overwhelms x-ray scatter from the target in that x-ray scatter from a position on the target is no more than 10% of the x-ray scatter due to intervening air scatter that reaches at least one point in the detector plane of the x-ray scatter apparatus. The target is illuminated with a beam of x-rays scanned across the target, and x-rays scattered by the target are detected using a detector with a centroid displaced with respect to the beam axis by at least five feet. The detector signal is then processed to generate an image of the target. The beam of x-rays may be unshielded, and/or the detector may be uncollimated.