摘要:
A system, method, and computer program product for performing a bare-metal restore, the system including a target storage device, and a target computer configured to boot independent of the target storage device, expose the target storage device to a restoring computer after the target computer has booted, and act as a conduit for the restoring computer to perform a bare-metal restore of backup data onto the target storage device, and the method including booting a target computer independent of a target storage device, exposing the target storage device to a restoring computer after the target computer has booted, and causing the target computer to act as a conduit for the restoring computer to perform a bare-metal restore of backup data onto the target storage device.
摘要:
Multiple target blocks on a first storage device are allocated to store a target object. The target blocks are arranged to be in a one-to-one correspondence with multiple source blocks of a source object. The target blocks are set to a non-populated state, and target blocks in the non-populated state are populated with data from corresponding source blocks. While the target blocks are being populated, if a request is received to retrieve data from one of the target blocks that is in the non-populated state, then the one of the target blocks is populated with the data from the corresponding source block and set to a populated state.
摘要:
Multiple target blocks are allocated on a first storage device to store a target object. The target blocks are arranged to be in a one-to-one correspondence with multiple source blocks of a source object. The target blocks are set to a non-populated state, and target blocks in the non-populated state are populated with data from corresponding source blocks. While the target blocks are being populated, if a request is received to retrieve data from one of the target blocks that is in the non-populated state, then the one of the target blocks is populated with the data from the corresponding source block and set to a populated state.
摘要:
For block level backup, a full image level backup is created of a file system from production storage at a production server to random access storage at a backup server. A mounted image is created from the full image that exposes a block level representation of the file system of the production server for read operations in a file level format. File enumeration is performed on the mounted image for files. Block level read operations are monitored while the files are being enumerated. During monitoring, blocks that are read for the read operations are marked as meta-data blocks. Blocks that are not marked as meta-data blocks are identified as data blocks. The data blocks are migrated to sequential storage, while leaving the meta-data blocks on the random access storage, wherein the data blocks form a backup image.
摘要:
For block level backup, a full image level backup is created of a file system from production storage at a production server to random access storage at a backup server. A mounted image is created from the full image that exposes a block level representation of the file system of the production server for read operations in a file level format. File enumeration is performed on the mounted image for files. Block level read operations are monitored while the files are being enumerated. During monitoring, blocks that are read for the read operations are marked as meta-data blocks. Blocks that are not marked as meta-data blocks are identified as data blocks. The data blocks are migrated to sequential storage, while leaving the meta-data blocks on the random access storage, wherein the data blocks form a backup image.
摘要:
For block level backup, a full image level backup is created of a file system from production storage at a production server to random access storage at a backup server. A mounted image is created from the full image that exposes a block level representation of the file system of the production server for read operations in a file level format. File enumeration is performed on the mounted image for files. Block level read operations are monitored while the files are being enumerated. During monitoring, blocks that are read for the read operations are marked as meta-data blocks. Blocks that are not marked as meta-data blocks are identified as data blocks. The data blocks are migrated to sequential storage, while leaving the meta-data blocks on the random access storage, wherein the data blocks form a backup image.
摘要:
For block level backup, a full image level backup is created of a file system from production storage at a production server to random access storage at a backup server. A mounted image is created from the full image that exposes a block level representation of the file system of the production server for read operations in a file level format. File enumeration is performed on the mounted image for files. Block level read operations are monitored while the files are being enumerated. During monitoring, blocks that are read for the read operations are marked as meta-data blocks. Blocks that are not marked as meta-data blocks are identified as data blocks. The data blocks are migrated to sequential storage, while leaving the meta-data blocks on the random access storage, wherein the data blocks form a backup image.
摘要:
Described is a method, system, and computer program product for selecting a data repository within a computing environment. The data repository can exist on multiple target computing systems as a logical entity called a volume or a file system. When selecting at least one data repository, a data protection system of the computing environment analyzes the incoming data from a source computing system, in conjunction with information describing the data repositories. The data repository information, or repository characteristic information, can be stored on a repository volume table (RVT) of the data protection system. By determining a weighted selection score from the analysis of all the information available to the data protection system, the data protection system can intelligently select a data repository for storing data from the source computing system. Further, by tracking repository characteristic information on a continuous or periodic basis, the data protection system can enable emulated views of data that has been stored on the data repositories of the computing environment.
摘要:
Described is a method, system, and computer program product for selecting a data repository within a computing environment. The data repository can exist on multiple target computing systems as a logical entity called a volume or a file system. When selecting at least one data repository, a data protection system of the computing environment analyzes the incoming data from a source computing system, in conjunction with information describing the data repositories. The data repository information, or repository characteristic information, can be stored on a repository volume table (RVT) of the data protection system. By determining a weighted selection score from the analysis of all the information available to the data protection system, the data protection system can intelligently select a data repository for storing data from the source computing system. Further, by tracking repository characteristic information on a continuous or periodic basis, the data protection system can enable emulated views of data that has been stored on the data repositories of the computing environment.
摘要:
Embodiments of the present invention provide a scalable, efficient way to backup data in a block-level incremental-forever backup system such that backup and expiration of data can be achieved at the granularity of a single backup version, without having to read or move data that is stored in backup storage.