摘要:
In a method for image data acquisition of a region of interest in a subject with a magnetic resonance device, wherein, to establish the field of view, a minimal geometric shape encompassing the subject to be acquired and/or the surface of the subject is determined automatically from previously acquired localizer exposures as aliasing information for each exposure, at least one slice plane is determined for the acquisition of the region, and the phase coding direction and/or the extent of the field of view in the phase coding direction is determined for every slice plane using the aliasing information.
摘要:
A method and system for automated view planning for cardiac magnetic resonance imaging (MRI) acquisition is disclosed. The method and system automatically generate a full scan prescription using a single 3D MRI volume. The left ventricle (LV) is segmented in the 3D MRI volume. Cardiac landmarks are detected in the automatically prescribed slices. A full scan prescription, including a short axis stack and 2-chamber, 3-chamber, and 4-chamber views, is automatically generated based on cardiac anchors provided by the segmented left ventricle and the detected cardiac landmarks in the 3D MRI volume.
摘要:
A method and system for automated view planning for cardiac magnetic resonance imaging (MRI) acquisition is disclosed. The method and system automatically generate a full scan prescription using a single 3D MRI volume. The left ventricle (LV) is segmented in the 3D MRI volume. Cardiac landmarks are detected in the automatically prescribed slices. A full scan prescription, including a short axis stack and 2-chamber, 3-chamber, and 4-chamber views, is automatically generated based on cardiac anchors provided by the segmented left ventricle and the detected cardiac landmarks in the 3D MRI volume.
摘要:
In a method for image data acquisition of a region of interest in a subject with a magnetic resonance device, wherein, to establish the field of view, a minimal geometric shape encompassing the subject to be acquired and/or the surface of the subject is determined automatically from previously acquired localizer exposures as aliasing information for each exposure, at least one slice plane is determined for the acquisition of the region, and the phase coding direction and/or the extent of the field of view in the phase coding direction is determined for every slice plane using the aliasing information.
摘要:
A method for automatically determining a field of view for performing a subsequent medical imaging study includes acquiring one or more preliminary images. A body mask is generated by thresholding the preliminary images and identifying a largest connected component. A boundary mask is obtained from the boundary of the generated body mask. A rectangular bounding box is fit to the obtained boundary mask. The rectangular bounding box is used as a field of view for performing a subsequent medical imaging study.
摘要:
A method for automatically determining a field of view for performing a subsequent medical imaging study includes acquiring one or more preliminary images. A body mask is generated by thresholding the preliminary images and identifying a largest connected component. A boundary mask is obtained from the boundary of the generated body mask. A rectangular bounding box is fit to the obtained boundary mask. The rectangular bounding box is used as a field of view for performing a subsequent medical imaging study.
摘要:
In a method for representation of the heart in a magnetic resonance system at least one MR overview image of the heart is acquired. An image plane with a predetermined position relative to the magnetic resonance system is selected for this overview image. The acquired MR overview image is displayed and a number of marking points are established in the displayed overview image. Further image planes for representation of the heart are calculated using some of the established marking points. Further MR images are acquired in the calculated image planes.
摘要:
In a method for representation of the heart in a magnetic resonance system at least one MR overview image of the heart is acquired. An image plane with a predetermined position relative to the magnetic resonance system is selected for this overview image. The acquired MR overview image is displayed and a number of marking points are established in the displayed overview image. Further image planes for representation of the heart are calculated using some of the established marking points. Further MR images are acquired in the calculated image planes.
摘要:
A method for identifying a region of interest within a time sequence of images includes acquiring a time sequence of images comprising a plurality of image frames. Image segmentation is performed to segment a region of interest (ROI) from within each of the plurality of image frames of the time sequence of images. Manual edits are received for the ROI within one or more of the plurality of image frames. The manual edits are propagated to other image frames of the plurality of images. An extent to which each of the manual edits are propagated to other image frames is dependent upon a transformation function or deformation field used to propagate the manual edits and a weighing factor that is influenced by a distance in time between the other image frames and the frames that have been manually edited.
摘要:
A method for identifying a region of interest within a time sequence of images includes acquiring a time sequence of images comprising a plurality of image frames. Image segmentation is performed to segment a region of interest (ROI) from within each of the plurality of image frames of the time sequence of images. Manual edits are received for the ROI within one or more of the plurality of image frames. The manual edits are propagated to other image frames of the plurality of images. An extent to which each of the manual edits are propagated to other image frames is dependent upon a transformation function or deformation field used to propagate the manual edits and a weighing factor that is influenced by a distance in time between the other image frames and the frames that have been manually edited.