摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for assigning saliency weights to words of an ASR model. The saliency values assigned to words within an ASR model are based on human perception judgments of previous transcripts. These saliency values are applied as weights to modify an ASR model such that the results of the weighted ASR model in converting a spoken document to a transcript provide a more accurate and useful transcription to the user.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for assigning saliency weights to words of an ASR model. The saliency values assigned to words within an ASR model are based on human perception judgments of previous transcripts. These saliency values are applied as weights to modify an ASR model such that the results of the weighted ASR model in converting a spoken document to a transcript provide a more accurate and useful transcription to the user.
摘要:
Disclosed herein are methods, systems, and computer-readable storage media for automatic speech recognition. The method includes selecting a speaker independent model, and selecting a quantity of speaker dependent models, the quantity of speaker dependent models being based on available computing resources, the selected models including the speaker independent model and the quantity of speaker dependent models. The method also includes recognizing an utterance using each of the selected models in parallel, and selecting a dominant speech model from the selected models based on recognition accuracy using the group of selected models. The system includes a processor and modules configured to control the processor to perform the method. The computer-readable storage medium includes instructions for causing a computing device to perform the steps of the method.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for handling expected repeat speech queries or other inputs. The method causes a computing device to detect a misrecognized speech query from a user, determine a tendency of the user to repeat speech queries based on previous user interactions, and adapt a speech recognition model based on the determined tendency before an expected repeat speech query. The method can further include recognizing the expected repeat speech query from the user based on the adapted speech recognition model. Adapting the speech recognition model can include modifying an acoustic model, a language model, and a semantic model. Adapting the speech recognition model can also include preparing a personalized search speech recognition model for the expected repeat query based on usage history and entries in a recognition lattice. The method can include retaining unmodified speech recognition models with adapted speech recognition models.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for handling expected repeat speech queries or other inputs. The method causes a computing device to detect a misrecognized speech query from a user, determine a tendency of the user to repeat speech queries based on previous user interactions, and adapt a speech recognition model based on the determined tendency before an expected repeat speech query. The method can further include recognizing the expected repeat speech query from the user based on the adapted speech recognition model. Adapting the speech recognition model can include modifying an acoustic model, a language model, and/or a semantic model. Adapting the speech recognition model can also include preparing a personalized search speech recognition model for the expected repeat query based on usage history and entries in a recognition lattice. The method can include retaining unmodified speech recognition models with adapted speech recognition models.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for generating an acoustic model for use in speech recognition. A system configured to practice the method first receives training data and identifies non-contextual lexical-level features in the training data. Then the system infers sentence-level features from the training data and generates a set of decision trees by node-splitting based on the non-contextual lexical-level features and the sentence-level features. The system decorrelates training vectors, based on the training data, for each decision tree in the set of decision trees to approximate full-covariance Gaussian models, and then can train an acoustic model for use in speech recognition based on the training data, the set of decision trees, and the training vectors.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for a speech recognition application for directory assistance that is based on a user's spoken search query. The spoken search query is received by a portable device and portable device then determines its present location. Upon determining the location of the portable device, that information is incorporated into a local language model that is used to process the search query. Finally, the portable device outputs the results of the search query based on the local language model.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for generating an acoustic model for use in speech recognition. A system configured to practice the method first receives training data and identifies non-contextual lexical-level features in the training data. Then the system infers sentence-level features from the training data and generates a set of decision trees by node-splitting based on the non-contextual lexical-level features and the sentence-level features. The system decorrelates training vectors, based on the training data, for each decision tree in the set of decision trees to approximate full-covariance Gaussian models, and then can train an acoustic model for use in speech recognition based on the training data, the set of decision trees, and the training vectors.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for generating domain-specific speech recognition models for a domain of interest by combining and tuning existing speech recognition models when a speech recognizer does not have access to a speech recognition model for that domain of interest and when available domain-specific data is below a minimum desired threshold to create a new domain-specific speech recognition model. A system configured to practice the method identifies a speech recognition domain and combines a set of speech recognition models, each speech recognition model of the set of speech recognition models being from a respective speech recognition domain. The system receives an amount of data specific to the speech recognition domain, wherein the amount of data is less than a minimum threshold to create a new domain-specific model, and tunes the combined speech recognition model for the speech recognition domain based on the data.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for a speech recognition application for directory assistance that is based on a user's spoken search query. The spoken search query is received by a portable device and portable device then determines its present location. Upon determining the location of the portable device, that information is incorporated into a local language model that is used to process the search query. Finally, the portable device outputs the results of the search query based on the local language model.