摘要:
Fluid property modeling that employs a model that characterizes asphaltene concentration gradients is integrated into a reservoir modeling and simulation framework to allow for reservoir compartmentalization (the presence or absence of flow barrier in the reservoir) to be assessed more quickly and easily. Additionally, automated integration of the fluid property modeling into the reservoir modeling and simulation framework allows the compositional gradients produced by the fluid property modeler (particularly asphaltene concentration gradients) to be combined with other data, such as geologic data and other petrophysical data, which allows for more accurate assessment of reservoir compartmentalization.
摘要:
Fluid property modeling that employs a model that characterizes asphaltene concentration gradients is integrated into a reservoir modeling and simulation framework to allow for reservoir compartmentalization (the presence or absence of flow barrier in the reservoir) to be assessed more quickly and easily. Additionally, automated integration of the fluid property modeling into the reservoir modeling and simulation framework allows the compositional gradients produced by the fluid property modeler (particularly asphaltene concentration gradients) to be combined with other data, such as geologic data and other petrophysical data, which allows for more accurate assessment of reservoir compartmentalization.
摘要:
An improved method that performs downhole fluid analysis of the fluid properties of a reservoir of interest and that characterizes the reservoir of interest based upon such downhole fluid analysis.
摘要:
An improved method that performs downhole fluid analysis of the fluid properties of a reservoir of interest and that characterizes the reservoir of interest based upon such downhole fluid analysis.
摘要:
A method for determining reservoir architecture using modeling of a non-equilibrium distribution of at least one analyte in reservoir fluids. The analyte(s) of the analysis preferably has (have) significant compositional variation in the reservoir. For example, the analyte can be a later charging single gas component (such as methane, carbon dioxide, or hydrogen sulfide) in a multi-component fluid system. In this case, the model can assume that the components of the early charge are in a stationary state or in equilibrium, whereas the later charge is in a state of non-equilibrium. The non-equilibrium distribution of the analyte(s) derived from the model is compared to the distribution of the analyte(s) derived from downhole or laboratory fluid analysis of reservoir fluid, and the architecture of the reservoir is determined based upon such comparison.
摘要:
A methodology for reservoir understanding that performs investigation of asphaltene instability as a function of location in a reservoir of interest. In the preferred embodiment, results derived as part of the investigation of asphaltene instability are used as a workflow decision point for selectively performing additional analysis of reservoir fluids. The additional analysis of reservoir fluids can verify the presence of asphaltene flocculation onset conditions and/or determine the presence and location of phase-separated bitumen in the reservoir of interest.
摘要:
A method for determining reservoir architecture using modeling of a non-equilibrium distribution of at least one analyte in reservoir fluids. The analyte(s) of the analysis preferably has (have) significant compositional variation in the reservoir. For example, the analyte can be a later charging single gas component (such as methane, carbon dioxide, or hydrogen sulfide) in a multi-component fluid system. In this case, the model can assume that the components of the early charge are in a stationary state or in equilibrium, whereas the later charge is in a state of non-equilibrium. The non-equilibrium distribution of the analyte(s) derived from the model is compared to the distribution of the analyte(s) derived from downhole or laboratory fluid analysis of reservoir fluid, and the architecture of the reservoir is determined based upon such comparison.
摘要:
A methodology for reservoir understanding that performs investigation of asphaltene instability as a function of location in a reservoir of interest. In the preferred embodiment, results derived as part of the investigation of asphaltene instability are used as a workflow decision point for selectively performing additional analysis of reservoir fluids. The additional analysis of reservoir fluids can verify the presence of asphaltene flocculation onset conditions and/or determine the presence and location of phase-separated bitumen in the reservoir of interest.
摘要:
Methods and systems to characterize a fluid in a reservoir to determine if the fluid is in one of equilibrium or non-equilibrium in terms of one of gravity, solvency power, entropy effect or some combination thereof. The method includes acquiring tool data at each depth for each fluid sample of at least two fluid samples wherein each fluid sample is at a different depth and communicating the tool data to a processor. Determining formation properties of each fluid sample to obtain formation property data and determining fluid properties for each fluid sample to obtain fluid property data. Selecting a mathematical model based on one of gravity, solvency power or entropy, in view of a fluid property, using one of tool data, formation property data, fluid property data, known fluid reservoir data or some combination thereof, to predict if the fluid is in an equilibrium distribution or a non-equilibrium distribution.
摘要:
The present disclosure relates to apparatuses and methods to detect a fluid contamination level of a fluid sample. The method may comprise providing a fluid sample downhole from a subterranean formation, applying a reactant to the fluid sample to create a combined fluid, observing the combined fluid, and determining if contaminants are present within the fluid sample based upon the observing the combined fluid.