摘要:
A method includes receiving a restoration indicator associated with a path that includes an optical cross-connect (OXC). The OXC is reconfigured from a standby configuration to a restoration configuration in response to the restoration indicator. An optical signal received in a first direction at a first wavelength is optically regenerated to produce an optical signal in the first direction at a second wavelength. An optical signal received in a second direction at the second wavelength is optically regenerated to produce an optical signal in the second direction at the first wavelength.
摘要:
A method includes receiving a restoration indicator associated with a path that includes an optical cross-connect (OXC). The OXC is reconfigured from a standby configuration to a restoration configuration in response to the restoration indicator. An optical signal received in a first direction at a first wavelength is optically regenerated to produce an optical signal in the first direction at a second wavelength. An optical signal received in a second direction at the second wavelength is optically regenerated to produce an optical signal in the second direction at the first wavelength.
摘要:
A method includes receiving a restoration indicator associated with a path that includes an optical cross-connect (OXC). The OXC is reconfigured from a standby configuration to a restoration configuration in response to the restoration indicator. An optical signal received in a first direction at a first wavelength is optically regenerated to produce an optical signal in the first direction at a second wavelength. An optical signal received in a second direction at the second wavelength is optically regenerated to produce an optical signal in the second direction at the first wavelength.
摘要:
The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches the use of a single optical transport system for both metropolitan area transport and long haul transport of data and voice traffic.
摘要:
This invention provides for a technique for selectively off-loading traffic from congested sub-regions of a network to more lightly-loaded regions by making use of Multiprotocol Label Switching (MPLS). For each network element, an Interior Gateway Protocol (IGP) routing is employed to provide re-routing and to identify congested links caused by re-routed trunks for each single failure. The re-routed traffic is then analyzed and alternate Label Switched Paths (LSPs) are identified for such traffic trunks so that the traffic is directed to the alternate LSPs during the single failure event.
摘要:
The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches the use of a single optical transport system for both metropolitan area transport and long haul transport of data and voice traffic.
摘要:
The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of high volume of data and voice traffic among different locations. In particular, the improvement teaches the use of a single optical transport system for both metropolitan area transport and long haul transport of data and voice traffic.
摘要:
An arrangement in a node in an optical communication network has one or more terminals 220 and/or 222 configured to provide local access to the network through the node, and an all-optical routing arrangement 202-204-206-208 configured to route optical signals among optical pathways extending from the node. The optical pathways include inter-node optical pathways (for example, pathways N and/or W) configured to carry optical signals into and out of the node to respective other elements in the network, as well as intra-node optical pathways (for example, pathway E) dedicated to carry optical signals between the routing arrangement and respective terminals so as to provide the local access to the network through the node. Placing the terminals on optical pathways allows redundancy of the terminals to avoid node isolation if a terminal fails, yet is more economical than conventional arrangements requiring a terminal for each pathway into the node.