摘要:
A light-emitting device includes an anode, a cathode, and at least one organic electroluminescent (“EL”) material positioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
摘要:
A light-emitting device includes an anode, a cathode, and at least one organic electroluminescent (“EL”) material positioned between the anode and the cathode. Nanoparticles of at least one photoluminescent material are dispersed in the organic EL material. The organic EL material emits a first electromagnetic (“EM”) radiation having a first spectrum in response to an applied electrical field. The PL material absorbs a portion of the first EM radiation emitted by the organic EL material and emits a second EM radiation having a second spectrum. A plurality of the light-emitting devices are arranged on a transparent substrate to provide a panel display or a lighting source.
摘要:
An exemplary lighting apparatus comprises a light source such as an LED, a transmissive body optically coupled to the light source, and at least one region of luminescent material formed on a portion of the transmissive body, the at least one region of luminescent material forming an ornamental design on the transmissive body, wherein the at least one region of luminescent material absorbs light having a first spectrum transmitted through the transmissive body and emits light having a second spectrum outside of the transmissive body. The lighting apparatus can be used in a decorative manner, such as for holiday lighting or as a display. The lighting apparatus can be used to display a variety of patterns and shapes and can operate safely at low power over a long lifetime.
摘要:
A method is provided that includes heating a powder to a temperature that is below the melting point of the scintillator composition but is sufficiently high to form a coherent mass. The powder includes a scintillator composition. The coherent mass is polycrystalline and has a pulse height resolution that is less than 20 percent at 662 kilo electron volts; a light yield of more than 5000 photons per milli electron volt; or both a pulse height resolution that is less than 20 percent at 662 kilo electron volts and a light yield of more than 5000 photons per milli electron. A sintered body is provided also.
摘要:
A Y(P,V)O4:Eu3+ red emitting phosphor is doped with at least one of a trivalent rare earth ion excluding Eu and a divalent metal ion to improve the lumen maintenance of the phosphor. The preferred material is the Y(P,V)O4:Eu3+ phosphor doped with trivalent Tb3+ ions and divalent Mg2+ ions.
摘要:
An article of manufacture that comprises a structure that is a security system device (or portion thereof) or a fire system device (or portion), where a persistent phosphor and/or a persistent phosphor blend is either integrated in a coating on the structure; applied on the structure; or integrated in the structure, wherein the persistent phosphor comprises certain phosphors or phosphor blends. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
摘要:
A scintillator composition includes a matrix material, where the matrix material includes an alkaline earth metal and a lanthanide halide. The scintillator composition further includes an activator ion, where the activator ion is a trivalent ion. In one embodiment, the scintillator composition includes a matrix material represented by A2LnX7, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In another embodiment, the scintillator composition includes a matrix material represented by ALnX5, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In these embodiments, the scintillator composition includes an activator ion, where the activator ion includes cerium, or bismuth, or praseodymium, or combinations thereof.
摘要:
Scintillator compositions are set forth in this disclosure. The scintillators include a matrix material which includes at least one lanthanide halide, along with at least one alkaline earth metal or lead. An activator for the matrix such as lead is also described. Radiation detectors which employ the scintillators are discussed, along with related methods for detecting high-energy radiation with a scintillation detector.
摘要:
Scintillator materials based on certain types of halide-lanthanide matrix materials are described. In one embodiment, the matrix material contains a mixture of lanthanide halides, i.e., a solid solution of at least two of the halides, such as lanthanum chloride and lanthanum bromide. In another embodiment, the matrix material is based on lanthanum iodide alone, which must be substantially free of lanthanum oxyiodide. The scintillator materials, which can be in monocrystalline or polycrystalline form, also include an activator for the matrix material, e.g., cerium. Radiation detectors that use the scintillators are also described, as are related methods for detecting high-energy radiation.
摘要:
A method and apparatus for detecting impurities in quartz sand. The apparatus comprises at least one light source; at least one light detector assembly; a transport device; and a signal processor that receives the at least one signal from the at least one light detector assembly. The method comprises moving the quartz sand; illuminating the quartz sand to excite luminescence emission from impurities; receiving luminescence emission from the impurity; generating at least one signal indicative of the excited luminescence emission from the impurity; and determining if the signal represents an impurity in quartz sand.