摘要:
An article of manufacture that comprises a structure that is a security system device (or portion thereof) or a fire system device (or portion), where a persistent phosphor and/or a persistent phosphor blend is either integrated in a coating on the structure; applied on the structure; or integrated in the structure, wherein the persistent phosphor comprises certain phosphors or phosphor blends. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
摘要:
An article of manufacture that comprises a structure that is a security system device (or portion thereof) or a fire system device (or portion), where a persistent phosphor and/or a persistent phosphor blend is either integrated in a coating on the structure; applied on the structure; or integrated in the structure, wherein the persistent phosphor comprises certain phosphors or phosphor blends. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
摘要:
A scintillator composition includes a matrix material, where the matrix material includes an alkaline earth metal and a lanthanide halide. The scintillator composition further includes an activator ion, where the activator ion is a trivalent ion. In one embodiment, the scintillator composition includes a matrix material represented by A2LnX7, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In another embodiment, the scintillator composition includes a matrix material represented by ALnX5, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In these embodiments, the scintillator composition includes an activator ion, where the activator ion includes cerium, or bismuth, or praseodymium, or combinations thereof.
摘要:
A scintillator composition is described, including a matrix material and an activator. The matrix material includes at least one lanthanide halide compound. The matrix can also include at least one alkali metal, and in some embodiments, at least one alkaline earth metal. The composition also includes a praseodymium activator for the matrix. Radiation detectors that include the scintillators are disclosed. A method for detecting high-energy radiation with a radiation detector is also described.
摘要:
A scintillator composition includes a matrix material, where the matrix material includes an alkaline earth metal and a lanthanide halide. The scintillator composition further includes an activator ion, where the activator ion is a trivalent ion. In one embodiment, the scintillator composition includes a matrix material represented by A2LnX7, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In another embodiment, the scintillator composition includes a matrix material represented by ALnX5, where A includes an alkaline earth metal, Ln includes a lanthanide ion, and X includes a halide ion. In these embodiments, the scintillator composition includes an activator ion, where the activator ion includes cerium, or bismuth, or praseodymium, or combinations thereof.
摘要:
A scintillator composition is described, including a matrix material and an activator. The matrix material includes at least one lanthanide halide compound. The matrix can also include at least one alkali metal, and in some embodiments, at least one alkaline earth metal. The composition also includes a praseodymium activator for the matrix. Radiation detectors that include the scintillators are disclosed. A method for detecting high-energy radiation with a radiation detector is also described.
摘要:
Scintillator materials based on certain types of halide-lanthanide matrix materials are described. In one embodiment, the matrix material contains a mixture of lanthanide halides, i.e., a solid solution of at least two of the halides, such as lanthanum chloride and lanthanum bromide. In another embodiment, the matrix material is based on lanthanum iodide alone, which must be substantially free of lanthanum oxyiodide. The scintillator materials, which can be in monocrystalline or polycrystalline form, also include an activator for the matrix material, e.g., cerium. To further improve the stopping power and the scintillating efficiency of these halide scintillators, the addition of bismuth is disclosed. Radiation detectors that use the scintillators are also described, as are related methods for detecting high-energy radiation.
摘要:
A scintillator composition is disclosed, containing a solid solution of at least two cerium halides. A radiation detector for detecting high-energy radiation is also described herein. The detector includes the scintillator composition mentioned above, along with a photodetector optically coupled to the scintillator. A method for detecting high-energy radiation with a scintillation detector is also described, wherein the scintillation crystal is based on a mixture of cerium halides.
摘要:
A Y(P,V)O4:Eu3+ red emitting phosphor is doped with at least one of a trivalent rare earth ion excluding Eu and a divalent metal ion to improve the lumen maintenance of the phosphor. The preferred material is the Y(P,V)O4:Eu3+ phosphor doped with trivalent Tb3+ ions and divalent Mg2+ ions.
摘要:
Scintillator materials based on certain types of halide-lanthanide matrix materials are described. In one embodiment, the matrix material contains a mixture of lanthanide halides, i.e., a solid solution of at least two of the halides, such as lanthanum chloride and lanthanum bromide. In another embodiment, the matrix material is based on lanthanum iodide alone, which must be substantially free of lanthanum oxyiodide. The scintillator materials, which can be in monocrystalline or polycrystalline form, also include an activator for the matrix material, e.g., cerium. Radiation detectors that use the scintillators are also described, as are related methods for detecting high-energy radiation.