摘要:
An online method and apparatus for determining state of charge (SoC) and state of health (SoH) of batteries on platforms that present dynamic charge and discharge environments is disclosed. A rested open circuit voltage (OCV) may be estimated online using a battery dynamic model along with measured terminal voltage, current and temperature. The SoC and SoH can then be determined from this estimated OCV. The apparatus and methods may estimate SoC and SoH of a battery in a real-time fashion without the need to a) disconnect the battery system from service; b) wait for a predefined rest time; or c) depolarize the battery.
摘要:
An electrical power system may be provided with temporary power from a bank of supercapacitors connected to a bus of the power system. The supercapacitors may be charged from an output from a primary power source of the system during start-up of the power source. Output voltage of the primary power source may progressively increase and capacitor charging may occur at this progressively increasing voltage. Dedicated current-limiting devices are not required during charging. When temporary power is required the supercapacitors may be discharged sequentially in a series combination so that a high internal voltage of each capacitor is maintained and so that virtually all of the stored energy of the capacitor may be discharged to the bus at a usable voltage.
摘要:
An electrical power system may be provided with temporary power from a bank of supercapacitors connected to a bus of the power system. The supercapacitors may be charged from an output from a primary power source of the system during start-up of the power source. Output voltage of the primary power source may progressively increase and capacitor charging may occur at this progressively increasing voltage. Dedicated current-limiting devices are not required during charging. When temporary power is required the supercapacitors may be discharged sequentially in a series combination so that a high internal voltage of each capacitor is maintained and so that virtually all of the stored energy of the capacitor may be discharged to the bus at a usable voltage.
摘要:
An ungrounded electrical power distribution system may experience a single line to ground fault. Such a fault may not disrupt operation of the system, but its presence may raise a risk of additional problems if left uncorrected. A system for progressively grounding the ungrounded system may be initiated when a line to ground fault is suspected. As grounding through successively lower impedance proceeds, fault current may increase and detection of severity of the line to ground fault may be more readily achieved, thus facilitating localization of the fault.
摘要:
The present invention provides an electrical power distribution system that includes a first primary distribution panel (PDP) connected to a first source of electrical power and a second PDP connected to a second source of electrical power. The second PDP is connected to the first PDP by a conductor. A first solid state power controller (SSPC) receives signals corresponding to the flow of current through the first PDP to a load. A second SSPC receives signals corresponding to the flow of current between the first PDP and the second PDP. The first and second SSPC protect the electrical power distribution system from a variety of fault conditions.
摘要:
An ungrounded or floating DC electrical power distribution system may experience a single line to ground fault. Such a fault may not disrupt operation of the system, but its presence may raise a risk of additional problems if left uncorrected. A system for progressively grounding the ungrounded system may be initiated when a line to ground fault is suspected based on the voltage difference measured to a common chassis point. As grounding through successively lower impedance proceeds, fault current may increase and detection of severity of the line to ground fault may be more readily achieved, thus facilitating localization of the fault. Localization may be achieved through an analysis of direction of capacitive currents in isolatable zones of the system.
摘要:
An ungrounded or floating DC electrical power distribution system may experience a single line to ground fault. Such a fault may not disrupt operation of the system, but its presence may raise a risk of additional problems if left uncorrected. A system for progressively grounding the ungrounded system may be initiated when a line to ground fault is suspected based on the voltage difference measured to a common chassis point. As grounding through successively lower impedance proceeds, fault current may increase and detection of severity of the line to ground fault may be more readily achieved, thus facilitating localization of the fault. Localization may be achieved through an analysis of direction of capacitive currents in isolatable zones of the system.
摘要:
The present invention provides an electrical power distribution system that includes a first primary distribution panel (PDP) connected to a first source of electrical power and a second PDP connected to a second source of electrical power. The second PDP is connected to the first PDP by a conductor. A first solid state power controller (SSPC) receives signals corresponding to the flow of current through the first PDP to a load. A second SSPC receives signals corresponding to the flow of current between the first PDP and the second PDP. The first and second SSPC protect the electrical power distribution system from a variety of fault conditions.
摘要:
An ungrounded electrical power distribution system may experience a single line to ground fault. Such a fault may not disrupt operation of the system, but its presence may raise a risk of additional problems if left uncorrected. A system for progressively grounding the ungrounded system may be initiated when a line to ground fault is suspected. As grounding through successively lower impedance proceeds, fault current may increase and detection of severity of the line to ground fault may be more readily achieved, thus facilitating localization of the fault.