摘要:
An antenna apparatus for increasing the capacity in a cellular communication system. The antenna operates in conjunction with a mobile subscriber unit and provides a plurality of antenna elements, each coupled to a respective signal control component to provide a weight to the signal transmitted from each element. The weight for each antenna element is adjusted to achieve optimum reception during, for example, an idle mode when a pilot signal is received. The weight values cause the antenna array to create a beam former for signals to be transmitted from the mobile subscriber unit, and a directional receiving array to more optimally detect and receive signals transmitted from the base station. By directionally receiving and transmitting signals, multipath fading and intercell interference are greatly reduced. The weights are adjusted at the transmitting site in accord with signal quality metric information determined at the receiving site. The signal quality metric information is returned to the transmitting site where the optimum signal quality metric is determined. The weights at the transmitting site are then set to provide the antenna directional angle represented by the optimum signal quality metric.
摘要:
A personal computer's (PC) microprocessor is used to provide both the physical layer (PHY) and media access control (MAC) processing functions required to implement a wireless local area network (WLAN) adapter. This technique uses the polling mechanism associated with the power save (PS) functionality of WLAN protocol to relieve networking stress on the host processing system. It does this while maintaining networking integrity and packet delivery. The WLAN protocol polling mechanism is used to briefly inhibit the transfer of packets from the WLAN access point (AP) during peak periods of network traffic and/or host processor loading. Because the modulation, demodulation, and MAC functions, typically implemented in dedicated hardware on existing adapters are implemented in software running on the host PC microprocessor, other host system processes and applications can interfere with these time critical functions. Conversely, latency introduced by WLAN specific processing tasks during peak periods of network traffic may cause unacceptable delays to the other processes and applications requiring microprocessor attention. In addition to its primary stated purpose of allowing WLAN mobile stations to save power, this technique will use power save polling as a method for controlling delivery of network packets when the host is heavily loaded or when peak interrupt latencies make reliable packet delivery difficult or impossible.
摘要:
A personal computer's (PC) microprocessor is used to provide both the physical layer (PHY) and media access control (MAC) processing functions required to implement a wireless local area network (WLAN) adapter. This technique uses the polling mechanism associated with the power save (PS) functionality of WLAN protocol to relieve networking stress on the host processing system. It does this while maintaining networking integrity and packet delivery. The WLAN protocol polling mechanism is used to briefly inhibit the transfer of packets from the WLAN access point (AP) during peak periods of network traffic and/or host processor loading. Because the modulation, demodulation, and MAC functions, typically implemented in dedicated hardware on existing adapters are implemented in software running on the host PC microprocessor, other host system processes and applications can interfere with these time critical functions. Conversely, latency introduced by WLAN specific processing tasks during peak periods of network traffic may cause unacceptable delays to the other processes and applications requiring microprocessor attention. In addition to its primary stated purpose of allowing WLAN mobile stations to save power, this technique will use power save polling as a method for controlling delivery of network packets when the host is heavily loaded or when peak interrupt latencies make reliable packet delivery difficult or impossible.
摘要:
A personal computer's (PC) microprocessor is used to provide both the physical layer (PHY) and media access control (MAC) processing functions required to implement a wireless local area network (WLAN) adapter. This technique uses the polling mechanism associated with the power save (PS) functionality of WLAN protocol to relieve networking stress on the host processing system. It does this while maintaining networking integrity and packet delivery. The WLAN protocol polling mechanism is used to briefly inhibit the transfer of packets from the WLAN access point (AP) during peak periods of network traffic and/or host processor loading. Because the modulation, demodulation, and MAC functions, typically implemented in dedicated hardware on existing adapters are implemented in software running on the host PC microprocessor, other host system processes and applications can interfere with these time critical functions. Conversely, latency introduced by WLAN specific processing tasks during peak periods of network traffic may cause unacceptable delays to the other processes and applications requiring microprocessor attention. In addition to its primary stated purpose of allowing WLAN mobile stations to save power, this technique will use power save polling as a method for controlling delivery of network packets when the host is heavily loaded or when peak interrupt latencies make reliable packet delivery difficult or impossible.
摘要:
Tokens/keys are produced for wireless communications. These tokens/keys are used for watermarks, signature insertion, encryption and other uses. In one embodiment, contextual information is used to generate tokens/keys. The tokens/keys may be derived directly from the contextual information. The contextual information may be used in conjunction with other information to derive the tokens/keys. Tokens/keys may be exchanged between transmit/receive units. The exchange of these tokens/keys may be encrypted.
摘要:
The current location and bearing of a wireless transmit/receive unit (WTRU) are determined. Next, signal quality measurements of a pre-determined geographic region are taken. This geographic region includes the current location of the WTRU. From these quality measurements, a signal quality profile is generated. The signal quality profile and a directional guidance indicator are then displayed to the user of the WTRU. The display indicates areas of preferred signal quality relative to the current location of the WTRU.
摘要:
A method and wireless local area network (WLAN) adapter for the reduction of receive packet processing in a communications system receiver. The method includes establishing a set of criteria which identifies a packet as one requiring demodulation. The method further includes detecting a packet preamble to trigger at least one waveform identification function and determining with the at least one waveform identification function of the detected packet meets an established criteria for demodulation. The established criteria may include at least one of data rate, modulation type, signal to noise ratio, or coding rate. If the detected packet meets the established criteria for demodulation, a host processor may be interrupted to begin demodulation.
摘要:
A method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless orthogonal frequency division multiplexing (OFDM) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless OFDM communication system includes a transmitter which steganographically embeds digital information in an OFDM communication signal and wirelessly transmits the OFDM communication signal. The system further includes a receiver which receives the OFDM communication signal and extracts the steganographically embedded digital information from the received OFDM communication signal.
摘要:
A spread spectrum method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless code division multiple access (CDMA) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless CDMA communication system includes a transmitter which steganographically embeds digital information in a CDMA communication signal and wirelessly transmits the CDMA communication signal. The system further includes a receiver which receives the CDMA communication signal and extracts the steganographically embedded digital information from the received CDMA communication signal.