摘要:
Embodiments provide a receiver and a method for receiving data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency.In one embodiment the receiver includes a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal.
摘要:
Data is received that has been transmitted via a combination of radio frequency signals using carrier aggregation, each radio frequency signal occupying a respective radio frequency band, the bands being arranged in two groups separated in frequency by a first frequency region, the first of the two groups occupying a wider frequency region than the second group. Inphase and quadrature components of the radio frequency signals are filtered using a first bandpass filter bandwidth to give first bandpass filtered components and filtered using a second bandpass filter bandwidth, different from the first bandpass filter bandwidth, to give second bandpass filtered components. A reconfigurable receiver is configurable to a first mode to receive the combination of radio frequency signals, and is also configurable to at least a second mode. At least one first filter is configured, in the first mode, to use a first bandpass filter bandwidth and, in the second mode, to use a lowpass filter bandwidth. At least one second filter is configured, in the first mode, to use a second bandpass filter bandwidth, different from the first bandpass filter bandwidth.
摘要:
In accordance with an example embodiment of the present invention, an apparatus for transmission is disclosed comprising a processor configured to receive data and to form data packets, a radio frequency transmitter configured to transmit the data packets, a monitor configured to evaluate resource utilization of the radio frequency transmitter and to provide a resource utilization rate, and a controller, wherein the controller is configured to instruct the processor to form multiple output or single output data packets to the radio frequency transmitter based on the resource utilization rate.
摘要:
Embodiments provide a receiver and a method for receiving data transmitted via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency.In one embodiment the receiver includes a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and a second local oscillator frequency, different to the first frequency, in dependence on a signal strength of the first signal relative to a signal strength of the second signal.
摘要:
In accordance with an example embodiment of the present invention, an apparatus for transmission is disclosed comprising a processor configured to receive data and to form data packets, a radio frequency transmitter configured to transmit the data packets, a monitor configured to evaluate resource utilization of the radio frequency transmitter and to provide a resource utilization rate, and a controller, wherein the controller is configured to instruct the processor to form multiple output or single output data packets to the radio frequency transmitter based on the resource utilization rate.
摘要:
There are provided measures for enabling power control for inter-band multi-carrier capable devices, such as e.g. inter-band carrier aggregation capable devices. Such measures may exemplarily include calculating at least one output power restriction value for a cumulative output power for a combination of at least two uplink carriers of a terminal device, said two uplink carriers operating on different bands, signaling the calculated at least one output power restriction value to the terminal device, and performing power control for the at least two uplink carriers using the acquired at least one output power restriction value at the terminal device.
摘要:
There is provided a mechanism for controlling communications conducted in multiple frequency bands so as to decrease an interference level between the communications. When an interference situation caused between a first set UL communications performed on at least two different frequency bands and a DL communication performed on another frequency band is determined, a frequency carrier deactivation processing is conducted so as to deactivate either one of carriers of the at least two frequency bands of the set of UL communications. The deactivation processing comprises for example an autonomous denial on the UE side or an interference reporting with deactivation on the eNB side.
摘要:
network signal value is received (610) from one or more access points in response to a request to employ carrier aggregation. An additional maximum power reduction of a plurality of uplink and downlink signals among two or more radio bands is selectively produced (620) based upon the network signal value and a plurality of dynamic additional maximum power reduction parameters.
摘要:
There are provided measures for enabling power control for inter-band multi-carrier capable devices, such as e.g. inter-band carrier aggregation capable devices. Such measures may exemplarily include calculating at least one output power restriction value for a cumulative output power for a combination of at least two uplink carriers of a terminal device, said two uplink carriers operating on different bands, signaling the calculated at least one output power restriction value to the terminal device, and performing power control for the at least two uplink carriers using the acquired at least one output power restriction value at the terminal device.
摘要:
Embodiment are directed to an apparatus and/or method of dynamically selecting scheduling strategies in resource allocation. The method includes measuring a multi-radio radio frequency hardware scheduling workload, comparing the measured multi-radio radio frequency hardware scheduling workload with a threshold, and dynamically selecting a more optimal shared hardware component scheduling strategy based on a result of the comparing.