摘要:
In an embodiment, a host computing device includes an internal display and also includes a connector to connect to an external display. A cable is provided to connect to the connector and to connect to the external display. The cable includes video processing capabilities. For example, the cable may include a memory configured to store a frame buffer. The frame buffer may store a frame of video data for further processing by the video processing device in the cable. The video processing device may manipulate the frame in a variety of ways, e.g. scaling, rotating, gamma correction, dither correction, etc.
摘要:
In an embodiment, a host computing device includes an internal display and also includes a connector to connect to an external display. A cable is provided to connect to the connector and to connect to the external display. The cable includes video processing capabilities. For example, the cable may include a memory configured to store a frame buffer. The frame buffer may store a frame of video data for further processing by the video processing device in the cable. The video processing device may manipulate the frame in a variety of ways, e.g. scaling, rotating, gamma correction, dither correction, etc.
摘要:
In an embodiment, a host computing device includes an internal display and also includes a connector to connect to an external display. A cable is provided to connect to the connector and to connect to the external display. The cable includes video processing capabilities. For example, the cable may include a memory configured to store a frame buffer. The frame buffer may store a frame of video data for further processing by the video processing device in the cable. The video processing device may manipulate the frame in a variety of ways, e.g. scaling, rotating, gamma correction, dither correction, etc.
摘要:
In an embodiment, a host computing device includes an internal display and also includes a connector to connect to an external display. A cable is provided to connect to the connector and to connect to the external display. The cable includes video processing capabilities. For example, the cable may include a memory configured to store a frame buffer. The frame buffer may store a frame of video data for further processing by the video processing device in the cable. The video processing device may manipulate the frame in a variety of ways, e.g. scaling, rotating, gamma correction, dither correction, etc.
摘要:
A microchip configured to reliably transmit data is provided. The microchip includes a memory region and a selection module configured to select a portion of the data from the memory region. An error checking module configured to calculate a value derived from the selected portion of the data is provided. A pointer region including a plurality of object pointers is included. One of the object pointers is associated with an address of the portion of the data. The object pointer associated with the address is configured to receive a signal indicating an error associated with the transmission of the data. A scheduler module in communication with each of the plurality of object pointers is provided. The scheduler module is configured to schedule re-transmission of the selected portion of the data. A system and a method for reliably transmitting data between microchips are also provided.
摘要:
An integrated processor includes a microprocessor core and a bus interface unit. The integrated processor receives a reference clock signal and an external clock signal. The frequency of the reference clock signal is compared to the frequency of the external clock signal. Based upon this comparison, the appropriate frequency for the internal clock signal that controls the bus interface unit is determined. A clock generation circuit, such as a phase-locked loop, generates the appropriate frequency for the internal clock signal based upon the comparison of the reference clock signal and external clock signal.
摘要:
A method for communicating across first and second frequency domains of an integrated microchip is provided. The method initiates with determining a clock ratio between the first frequency domain and the second frequency domain. The first frequency domain is associated with a faster clock cycle. Then, a synchronizing signal based upon the clock ratio is generated. The synchronizing signal coordinates communication of data between the first and second frequency domains. Next, the data is transferred between respective frequency domains according to the synchronizing signal. A microchip and a system enabling synchronous data transfer across different frequency domains are also provided.