Abstract:
Techniques are disclosed relating to securing an accessory interface on a computing device. In various embodiments, a computing device detects a connection of an accessory device to an accessory interface port and, in response to the detected connection, evaluates a policy defining one or more criteria for restricting unauthorized access to the accessory interface port. Based on the evaluating, the computing device determines whether to disable the accessory interface port to prevent communication with the connected accessory device. In some embodiments, the computing device includes an interconnect coupled between the processor and the accessory interface port, and the interconnect includes a hub circuit configured to facilitate communication between a plurality of devices via the interconnect. In some embodiments, the computing device, in response to determining to disable the accessory interface port, instructs the hub circuit to prevent traffic from being conveyed from the accessory interface port.
Abstract:
According to one embodiment, in response to an inquiry received from a first application for an extension service associated with a first of a plurality of extension points of an operating system, a list of one or more extensions is identified that have been registered for the first extension point with the operating system, where the first application is executed within a first sandboxed environment. The identified list of extensions is displayed to prompt a user to select one of the extensions to be associated with the first application. In response to a selection of one of the extensions, the selected extension is launched in a second sandboxed environment. The selected extension and the second application were packaged in an application bundle, and when the application bundle was installed, the selected extension and the second application appeared in a registry of the operating system as separate applications.
Abstract:
Techniques for handling security of an application and its extension are described. In one embodiment, an application manager of an operating system running within a data processing system launches an application in a first sandboxed environment based on a first security profile associated with the application. In response to receiving a request from the application for accessing a function of an application extension that is associated with the application, the application manager launches the application extension in a second sandboxed environment based on a second security profile associated with the application extension. The application manager is to individually enforce security and manage resources of the application and the application extension in the first and second sandboxed environments based on the first and second security profiles, respectively. The second security profile specifies resources fewer than the first security profile.
Abstract:
Some embodiments of the invention provide a program for recovering access to an account. The program receives an access recovery parameter (ARP) after providing a first credential to log into an account and providing a notification of a second credential necessary for accessing another resource. The program then receives a request to modify the first credential and receives the second credential. Next, after authenticating the second credential, the program uses the ARP to modify the first credential without providing the first credential.
Abstract:
When an application is launched, a framework scanning module scans a plurality of frameworks linked against by the application to generate a list of available services. When the application makes a request of a particular service, a service verification module compares the requested service to the list of available services and if the requested service is found in the list of available services, sends a signal to the application, the signal allowing access to the requested service for the application. Otherwise, access to the requested service is denied.
Abstract:
Methods and apparatus are disclosed for detecting illegitimate or spoofed links on a web page. Illegitimate links can be detected by receiving a web link that includes link text and a link address, generating normalized link text based upon the link text, wherein characters in the link text that are visually similar are represented by a single normalized character identifier in the normalized text, determining whether the normalized link text is in the format of a link address, and determining that the text is safe when the normalized link text is not in the format of a link address. The techniques disclosed herein further involve determining whether the normalized link text matches the link address, determining that the text is safe when the normalized link text matches the link address, and determining that the text is unsafe when the normalized link text does not match the link address.
Abstract:
According to one aspect, a graphics management system receives a first message from a first process for granting one or more rights to a second process for accessing a GUI element owned by the first process. In response, the graphics management system transmits a second message to the second process, the second message offering the one or more rights to the second process. The graphics management system receives a third message from the second process indicating an acceptance of the offer. Thereafter, the graphics management system restricts access of the GUI element by the second process based on the one or more rights accepted by the second process.
Abstract:
According to one aspect, a graphics management system receives a first message from a first process for granting one or more rights to a second process for accessing a GUI element owned by the first process. In response, the graphics management system transmits a second message to the second process, the second message offering the one or more rights to the second process. The graphics management system receives a third message from the second process indicating an acceptance of the offer. Thereafter, the graphics management system restricts access of the GUI element by the second process based on the one or more rights accepted by the second process.
Abstract:
In response to a request for launching a program, a list of one or more application frameworks to be accessed by the program during execution of the program is determined. Zero or more entitlements representing one or more resources entitled by the program during the execution are determined. A set of one or more rules based on the entitlements of the program is obtained from at least one of the application frameworks. The set of one or more rules specifies one or more constraints of resources associated with the at least one application framework. A security profile is dynamically compiled for the program based on the set of one or more rules associated with the at least one application framework. The compiled security profile is used to restrict the program from accessing at least one resource of the at least one application frameworks during the execution of the program.
Abstract:
Some embodiments of the invention provide a program for recovering access to a service associated with an account. The program provides a login credential to log into the account to receive the associated service. Next, the program receives an access continuation parameter (ACP) after logging into the account. The program then accesses the service and receives a rejection of a subsequent access to the service. The program then provides the ACP in lieu of the login credential to continue to receive the service.