Abstract:
A display may have thin-film transistor circuitry that includes organic light-emitting diodes. The thin-film transistor circuitry may be formed on a substrate. First and second thin-film inorganic moisture barrier layers may be deposited on top of the thin-film transistor circuitry. An organic planarization layer may be interposed between the first and second thin-film inorganic moisture barrier layers. A moisture barrier glass layer may be attached to the second thin-film inorganic moisture barrier layer with a layer of liquid adhesive. The display may have functional layers such as a touch sensor and circular polarizer that are interposed between a cover glass layer and the moisture-barrier glass layer. A thermoplastic polymer moisture barrier ring that runs around the peripheral edge of the display may be laser welded between the moisture barrier glass layer and the substrate.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping split anodes that are separated by anode gaps. The anode gaps may extend vertically and horizontally or may extend diagonally. The pixel definition layer openings may have edges that extend vertically and horizontally or that extend diagonally. A display may have three different pixel colors or may have four different pixel colors. Each pixel definition layer opening may have a pair of split anodes that are overlapped by a common layer of emissive material or may have four split anodes that are overlapped by a common layer of emissive material.
Abstract:
An electronic device may include a display having an array of organic light-emitting diode display pixels. The display pixels may have subpixels of different colors. The subpixels may include red subpixels, green subpixels, and blue subpixels. The subpixels may be provided with shapes and orientations that improve manufacturing tolerances. Subpixels such as green and red subpixels may have hexagonal shapes while blue subpixel structures may be provided with diamond shapes coupled in pairs to form barbell-shaped blue subpixels. Subpixels can also be angled at 45° relative to horizontal. Subpixels ma have shapes that overlap adjacent display pixels. For example, an array of display pixels that has been rotated by 45° relative to the edges of a display substrate may have blue subpixels and or red subpixels that are shared between pairs of adjacent display pixels in an at of display pixels.
Abstract:
A display may have thin-film transistor circuitry that includes organic light-emitting diodes. The thin-film transistor circuitry may be formed on a substrate. First and second thin-film inorganic moisture barrier layers may be deposited on top of the thin-film transistor circuitry. An organic planarization layer may be interposed between the first and second thin-film inorganic moisture barrier layers. A moisture barrier glass layer may be attached to the second thin-film inorganic moisture barrier layer with a layer of liquid adhesive. The display may have functional layers such as a touch sensor and circular polarizer that are interposed between a cover glass layer and the moisture-barrier glass layer. A thermoplastic polymer moisture barrier ring that runs around the peripheral edge of the display may be laser welded between the moisture barrier glass layer and the substrate.
Abstract:
An electronic device may include a display having an array of organic light-emitting diode display pixels including red, green, and blue pixels. Anodes in the pixels of each color may have a variable pitch along a first dimension on a display substrate and a constant pitch along a second dimension on the display substrate that is orthogonal to the first dimension. Anodes in a row of red pixels may have a variable pitch along the row. anodes in a row of green pixels may have a variable pitch along the row, and anodes in a row of blue pixels may have a variable pitch along the row. The anodes of each different color of pixel may have constant pitches along columns of the array.
Abstract:
A flexible display encapsulation layer may be used to encapsulate and protect organic light-emitting diodes and a thin-film transistor layer on a flexible display. The flexible encapsulation layer may include a lateral dispersion layer that exhibits an anisotropic moisture diffusion characteristic. Lateral diffusion in the lateral dispersion layer is larger than vertical dispersion in a direction that runs perpendicular to the display. An inorganic conformal coating layer may cover the lateral diffusion layer and may serve as a pinhole filling layer. The pinhole filling layer may be covered with a moisture barrier layer that serves to prevent moisture from penetrating the display. A polymer protective layer may cover the moisture barrier layer and may be relatively insensitive to bending induced stress as the display is flexed.
Abstract:
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. A pixel definition layer may be formed on the thin-film transistor circuitry. Openings in the pixel definition layer may be provided with emissive material overlapping split anodes that are separated by anode gaps. The anode gaps may extend vertically and horizontally or may extend diagonally. The pixel definition layer openings may have edges that extend vertically and horizontally or that extend diagonally. A display may have three different pixel colors or may have four different pixel colors. Each pixel definition layer opening may have a pair of split anodes that are overlapped by a common layer of emissive material or may have four split anodes that are overlapped by a common layer of emissive material.
Abstract:
A flexible display encapsulation layer may be used to encapsulate and protect organic light-emitting diodes and a thin-film transistor layer on a flexible display. The flexible encapsulation layer may include a lateral dispersion layer that exhibits an anisotropic moisture diffusion characteristic. Lateral diffusion in the lateral dispersion layer is larger than vertical dispersion in a direction that runs perpendicular to the display. An inorganic conformal coating layer may cover the lateral diffusion layer and may serve as a pinhole filling layer. The pinhole filling layer may be covered with a moisture barrier layer that serves to prevent moisture from penetrating the display. A polymer protective layer may cover the moisture barrier layer and may be relatively insensitive to bending induced stress as the display is flexed.
Abstract:
An electronic device may include a display having an array of organic light-emitting diode display pixels. The display pixels may have subpixels of different colors. The subpixels may include red subpixels, green subpixels, and blue subpixels. The subpixels may be provided with shapes and orientations that improve manufacturing tolerances. Subpixels such as green and red subpixels may have hexagonal shapes while blue subpixel structures may be provided with diamond shapes coupled in pairs to form barbell-shaped blue subpixels. Subpixels can also be angled at 45° relative to horizontal. Subpixels ma have shapes that overlap adjacent display pixels. For example, an array of display pixels that has been rotated by 45° relative to the edges of a display substrate may have blue subpixels and or red subpixels that are shared between pairs of adjacent display pixels in an at of display pixels.