Abstract:
A light source in a rotary optical encoder can illuminate a pattern on a rotatable shaft and an optical sensor can detect either the light that is reflected or transmitted based on the pattern. A sampling rate of the optical sensor is dynamically adjusted based on a rotational speed of the rotatable shaft. A pulse rate of the light source may also be dynamically adjusted based on the sampling rate of the optical sensor.
Abstract:
An optical sensor can be multiplexed for different clients/features including estimating information or characteristics of a user's physiological signals. Additionally, the clients/features can include estimating information or characteristics independent from a user's physiological signals. As the number of clients increase and/or as the requirements for the clients increase, flexibility can be provided to accommodate the various clients. Parallelization of the optical sensor can be used to improve performance as the number of clients increase. For example, the hardware and software architecture can assemble patterns of time slots that measure all desired light paths for the multiple clients and distribute the corresponding measurements to each client according to the client requests. In some examples, the scanning sequence can be represented by frames including slots associated with multiple clients to compress the representation for larger or more complex scan sequences.
Abstract:
A light source in a rotary optical encoder can illuminate a pattern on a rotatable shaft and an optical sensor can detect either the light that is reflected or transmitted based on the pattern. A sampling rate of the optical sensor is dynamically adjusted based on a rotational speed of the rotatable shaft. A pulse rate of the light source may also be dynamically adjusted based on the sampling rate of the optical sensor.
Abstract:
Methods and apparatus for enabling rapid transactions over a speed limited bus are disclosed. In one exemplary embodiment of the present disclosure, a host controller and an application specific integrated circuit (ASIC) are connected via an Inter-Integrated Circuit (I2C) Bus that is further adapted to enable a simplified signaling scheme. Unlike traditional I2C bus transactions which are flexible but speed limited, the simplified signaling scheme reduces bus overhead and enables rapid transactions. In an exemplary context, the simplified signaling scheme enables the ASIC to rapidly configure a series of photodiodes with different channel gain parameters so as to, for example, measure heartbeats by visually detecting a pulse within human flesh.
Abstract:
A light source in a rotary optical encoder can illuminate a pattern on a rotatable shaft and an optical sensor can detect either the light that is reflected or transmitted based on the pattern. A sampling rate of the optical sensor is dynamically adjusted based on a rotational speed of the rotatable shaft. A pulse rate of the light source may also be dynamically adjusted based on the sampling rate of the optical sensor.
Abstract:
Methods and apparatus for enabling rapid transactions over a speed limited bus are disclosed. In one exemplary embodiment of the present disclosure, a host controller and an application specific integrated circuit (ASIC) are connected via an Inter-Integrated Circuit (I2C) Bus that is further adapted to enable a simplified signaling scheme. Unlike traditional I2C bus transactions which are flexible but speed limited, the simplified signaling scheme reduces bus overhead and enables rapid transactions. In an exemplary context, the simplified signaling scheme enables the ASIC to rapidly configure a series of photodiodes with different channel gain parameters so as to, for example, measure heartbeats by visually detecting a pulse within human flesh.