Abstract:
An electrostatic discharge (ESD) blocking component is set forth for a computing device. The computing device can include a housing formed of non-conducting material and an overlaying display assembly supported by the housing. The display assembly can further include a plurality of display elements such as thin film transistors (TFTs) interconnected by corresponding metallic traces. The ESD block is used to block static charges associated with an ESD event so that essentially no ESD event related static charge is accumulated on the metallic traces thereby preventing ESD related damage to the plurality of TFTs.
Abstract:
A housing for a personal electronic device is described herein. The housing may include at least one modular subassembly configured to be arranged within an internal cavity of the housing. The at least one modular subassembly is aligned with a feature external to the housing, is affixed to an interior surface of the internal cavity, and is configured to function both as an antenna and as an internal support member of the housing.
Abstract:
This application relates to methods and apparatus for detecting and characterizing the formation of cracks in a display cover. Various types of sensors can be used to accomplish the described embodiments. For example, a touch sensor can be utilized for detection and characterization purposes. Alternatively, a crack detection specific sensor or sensors can be added to a device. In some embodiments, when formation of a crack is detected, a device having a sensor that detects a crack can adjust its behavior depending upon how the crack is characterized. For example, the device can be configured to notify a user of the device of any or all systems of the device that will be affected by the detected crack. In some embodiments, crack characterization data can be sent to a device manufacturer to improve subsequent device models.