摘要:
A policy-based framework is described. This policy-based framework may be used to specify the privileges for logical entities to perform operations associated with an access-control element (such as an electronic Subscriber Identity Module) located within a secure element in an electronic device. Note that different logical entities may have different privileges for different operations associated with the same or different access-control elements. Moreover, the policy-based framework may specify types of credentials that are used by the logical entities during authentication, so that different types of credentials may be used for different operations and/or by different logical entities. Furthermore, the policy-based framework may specify the security protocols and security levels that are used by the logical entities during authentication, so that different security protocols and security levels may be used for different operations and/or by different logical entities.
摘要:
Systems, methods, and computer-readable media for managing secure transactions between electronic devices and service providers. In one embodiment, an administration entity system may receive device order data from an electronic device, wherein the received device order data is indicative of an order for an item of value of a service provider system to be stored on the electronic device, transmit administration order data to the service provider system based on the received device order data, wherein the administration order data is indicative of the order for the item of value, receive service provider fulfillment data from the service provider system based on the transmitted administration order data, wherein the service provider fulfillment data includes the item of value, and transmit administration fulfillment data to the electronic device based on the received service provider fulfillment data, wherein the administration fulfillment data includes the item of value.
摘要:
A device implementing a user configurable direct transfer system may include at least one processor configured to receive, from an electronic device associated with a user account, a request to establish a type of transfer between a first account associated with an entity and a second account associated with the user account, the request including an entity identifier and a transfer type identifier. The at least one processor may be further configured to generate a transfer alias that is stored in association with the entity identifier, a second account identifier, and the transfer type identifier, and provide the transfer alias to the electronic device and a server associated with the entity to facilitate the type of transfer between the first account associated with the entity and the second account associated with the user account.
摘要:
Representative embodiments described herein set forth techniques for optimizing large-scale deliveries of electronic Subscriber Identity Modules (eSIMs) to mobile devices. Specifically, instead of generating and assigning eSIMs when mobile devices are being activated—which can require significant processing overhead—eSIMs are pre-generated with a basic set of information, and are later-assigned to the mobile devices when they are activated. This can provide considerable benefits over conventional approaches that involve generating and assigning eSIMs during mobile device activation, especially when new mobile devices (e.g., smartphones, tablets, etc.) are being launched and a large number of eSIM assignment requests are to be fulfilled in an efficient manner.
摘要:
Representative embodiments described herein set forth techniques for optimizing large-scale deliveries of electronic Subscriber Identity Modules (eSIMs) to mobile devices. Specifically, instead of generating and assigning eSIMs when mobile devices are being activated—which can require significant processing overhead—eSIMs are pre-generated with a basic set of information, and are later-assigned to the mobile devices when they are activated. This can provide considerable benefits over conventional approaches that involve generating and assigning eSIMs during mobile device activation, especially when new mobile devices (e.g., smartphones, tablets, etc.) are being launched and a large number of eSIM assignment requests are to be fulfilled in an efficient manner.
摘要:
Methods and apparatus for user authentication and human intent verification of administrative operations for eSIMs of an eUICC included in a mobile device are disclosed. Certain administrative operations, such as import, modification, and/or export, of an eSIM and/or for an eUICCs firmware can require user authentication and/or human intent verification before execution of the administrative operations are performed or completed by the mobile device. A user of the mobile device provides information to link an external user account to an eSIM upon (or subsequent to) installation on the eUICC. User credentials, such as a user name and password, and/or information generated therefrom, can be used to authenticate the user with an external server. In response to successful user authentication, the administrative operations are performed. Human intent verification can also be performed in conjunction with user authentication to prevent malware from interfering with eSIM and/or eUICC functions of the mobile device.
摘要:
Methods and apparatus for the deployment of financial instruments and other assets are disclosed. In one embodiment, a security software protocol is disclosed that guarantees that the asset is always securely encrypted, that one and only one copy of an asset exists, and the asset is delivered to an authenticated and/or authorized customer. Additionally, exemplary embodiments of provisioning systems are disclosed that are capable of, among other things, handling large bursts of traffic (such as can occur on a so-called “launch day” of a device).
摘要:
Disclosed herein is a technique for revoking a root certificate from at least one client device. In particular, the technique involves causing a secure element—which is included in the at least one client device and is configured to store the root certificate as well as at least one backup root certificate—to permanently disregard the root certificate and prevent the at least one client device from utilizing the specific root certificate. According to one embodiment, this revocation occurs in response to a receiving a revocation message that directly targets the root certificate, where the message includes at least two levels of authentication that are verified by the secure element prior to carrying out the revocation. Once the root certificate is revoked, the secure element can continue to utilize the at least one backup root certificate, while permanently disregarding the revoked root certificate.
摘要:
To facilitate conducting a financial transaction via wireless communication between an electronic device and another electronic device, the electronic device determines a unique transaction identifier for the financial transaction based on financial-account information communicated to the other electronic device. The financial-account information specifies a financial account that is used to pay for the financial transaction. Moreover, the unique transaction identifier may be capable of being independently computed by one or more other entities associated with the financial transaction (such as a counterparty in the financial transaction or a payment network that processes payment for the financial transaction) based on the financial-account information communicated by the portable electronic device. The electronic device may also associate receipt information, which is subsequently received from a third party (such as the payment network), with the financial transaction by comparing the determined unique transaction identifier to the computed unique transaction identifier.
摘要:
A secure trusted service manager provider may include at least one processor configured to provide, to an electronic device, a first script to provision an applet instance corresponding to a third party server, the script including a public key corresponding to the third party server. The at least one processor may be configured to receive, from the electronic device, an encrypted symmetric key and provide the encrypted symmetric key to the third party server, the symmetric key being encrypted with the public key. The at least one processor may be configured to receive, from the third party server, an encrypted data element corresponding to a transaction to be performed by the applet instance, the encrypted data element being encrypted with the symmetric key, generate a second script that includes the encrypted data element and provide, to the electronic device, the second script that includes the encrypted data element.