Abstract:
Methods and apparatus for processing a substrate are provided. In some embodiments, a method for processing a substrate includes: energizing a target disposed at a distance from a plurality of magnets disposed within a processing volume of a processing chamber, and moving the plurality of magnets either away from or closer to the target at a predetermined distance based on an inverse target voltage curve that is determined using a third order polynomial.
Abstract:
Methods of processing a substrate in a PVD chamber are provided herein. In some embodiments, a method of processing a substrate in a PVD chamber, includes: sputtering material from a target disposed in the PVD chamber and onto a substrate, wherein at least some of the material sputtered from the target is guided to the substrate through a magnetic field provided by one or more upper magnets disposed about a processing volume of the PVD chamber above a support pedestal for the substrate in the PVD chamber, one or more first magnets disposed about the support pedestal and providing an increased magnetic field strength at an edge region of the substrate, and one or more second magnets disposed below the support pedestal that increase a magnetic field strength at a central region of the substrate.
Abstract:
A plasma vapor deposition (PVD) chamber used for depositing material includes an apparatus for influencing ion trajectories during deposition on a substrate. The apparatus includes at least one annular support assembly configured to be externally attached to and positioned below a substrate support pedestal and a magnetic field generator affixed to the annular support assembly and configured to radiate magnetic fields on a top surface of the substrate. The magnetic field generator may include a plurality of symmetrically spaced discrete permanent magnets or may use one or more electromagnets to generate the magnetic fields.
Abstract:
A plasma vapor deposition (PVD) chamber used for depositing material includes an apparatus for influencing ion trajectories during deposition on a substrate. The apparatus includes at least one annular support assembly configured to be externally attached to and positioned below a substrate support pedestal and a magnetic field generator affixed to the annular support assembly and configured to radiate magnetic fields on a top surface of the substrate. The magnetic field generator may include a plurality of symmetrically spaced discrete permanent magnets or may use one or more electromagnets to generate the magnetic fields.
Abstract:
A chamber component for a processing chamber is disclosed herein. In one embodiment, a chamber component for a processing chamber includes a component part body having unitary monolithic construction. The component part body has a textured surface. The textured surface includes a plurality of independent engineered macro features integrally formed with the component part body. The engineered macro features include a macro feature body extending from the textured surface.