METHOD FOR THE RECOGNITION OF A MOVING PEDESTRIAN

    公开(公告)号:US20190318162A1

    公开(公告)日:2019-10-17

    申请号:US16361897

    申请日:2019-03-22

    Abstract: A method for the recognition of a moving pedestrian by means of a radar sensor system includes the steps of transmitting a primary radar signal into an observation space and of receiving a secondary radar signal reflected by the moving pedestrian. The secondary radar signal is processed, wherein the processing of the secondary radar signal includes the steps of generating a Micro-Doppler spectro-gram of the secondary radar signal, determining, based on the Micro-Doppler spectrogram, an observed bulk speed of the moving pedestrian, determining, based on the Micro-Doppler spectrogram, at least one gait cycle parameter of the moving pedestrian and determining, based on the determined observed bulk speed and the determined gait cycle parameter, an illumination angle between a moving direction of the moving pedestrian and the line of sight.

    Method of determining an alignment error of an antenna and vehicle with an antenna and a detection device

    公开(公告)号:US11249171B2

    公开(公告)日:2022-02-15

    申请号:US16442743

    申请日:2019-06-17

    Abstract: A method of determining an alignment error of an antenna is described, wherein the antenna is installed at a vehicle and in cooperation with a detection device, and wherein the detection device is configured to determine a plurality of detections. Determining the plurality of detections comprises emitting a first portion of electromagnetic radiation through the antenna, receiving a second portion of electromagnetic radiation through the antenna, and evaluating the second portion of electromagnetic radiation in dependence of the first portion of electromagnetic radiation in order to localize areas of reflection of the first portion of electromagnetic radiation in the vicinity of the antenna. The method comprises determining a first detection and at least a second detection by using the detection device, and determining the alignment error by means of a joint evaluation of the first detection and the second detection.

    METHOD FOR THE RECOGNITION OF OBJECTS
    4.
    发明申请

    公开(公告)号:US20190317204A1

    公开(公告)日:2019-10-17

    申请号:US16366005

    申请日:2019-03-27

    Abstract: A method includes identifying, from a reflected radar signal, a plurality of single detections corresponding to object surface spots detected by the radar sensor system, wherein the positions of the single detections in a Range-Doppler-map are deter-mined, wherein at least a region of the Range-Doppler map is divided into a plurality of adjacent evaluation regions separated by separation lines, wherein the separation lines extend parallel to one of the range axis and the Doppler axis. For each evaluation region, at least one selected detection is determined which has, among the detections present in the respective evaluation region, an extremal value with respect to the other axis of the range axis and the Doppler axis, and a boundary of the at least one object is determined based on the selected detections.

    Method of Estimating Target Height by Detection Device

    公开(公告)号:US20220326009A1

    公开(公告)日:2022-10-13

    申请号:US17658490

    申请日:2022-04-08

    Abstract: A method is disclosed, which is carried out by a detection device having a transmitter element for transmitting wave signals and two vertically aligned receiver elements for receiving wave signals, separated by a given spacing. The method includes transmitting, at the transmitter element, a wave signal that is reflected by the target. Each receiver element receives the wave signal reflected by the target, where the wave signal propagates via multiple paths caused by the reflecting surface. While a target distance varies, a phase difference between the reflected wave signals received by the two receiver elements is measured. From the phase difference measurements, a physical quantity fluctuation is determined in relation to the target distance. The information on the target height is then derived from the physical quantity fluctuation.

    METHOD OF DETERMINING AN ALIGNMENT ERROR OF AN ANTENNA AND VEHICLE WITH AN ANTENNA AND A DETECTION DEVICE

    公开(公告)号:US20200003868A1

    公开(公告)日:2020-01-02

    申请号:US16442743

    申请日:2019-06-17

    Abstract: A method of determining an alignment error of an antenna is described, wherein the antenna is installed at a vehicle and in cooperation with a detection device, and wherein the detection device is configured to determine a plurality of detections. Determining the plurality of detections comprises emitting a first portion of electromagnetic radiation through the antenna, receiving a second portion of electromagnetic radiation through the antenna, and evaluating the second portion of electromagnetic radiation in dependence of the first portion of electromagnetic radiation in order to localize areas of reflection of the first portion of electromagnetic radiation in the vicinity of the antenna. The method comprises determining a first detection and at least a second detection by using the detection device, and determining the alignment error by means of a joint evaluation of the first detection and the second detection.

    Method for the recognition of a moving pedestrian

    公开(公告)号:US10929653B2

    公开(公告)日:2021-02-23

    申请号:US16361897

    申请日:2019-03-22

    Abstract: A method for the recognition of a moving pedestrian by means of a radar sensor system includes the steps of transmitting a primary radar signal into an observation space and of receiving a secondary radar signal reflected by the moving pedestrian. The secondary radar signal is processed, wherein the processing of the secondary radar signal includes the steps of generating a Micro-Doppler spectro-gram of the secondary radar signal, determining, based on the Micro-Doppler spectrogram, an observed bulk speed of the moving pedestrian, determining, based on the Micro-Doppler spectrogram, at least one gait cycle parameter of the moving pedestrian and determining, based on the determined observed bulk speed and the determined gait cycle parameter, an illumination angle between a moving direction of the moving pedestrian and the line of sight.

    Method for the recognition of an object

    公开(公告)号:US11131766B2

    公开(公告)日:2021-09-28

    申请号:US16359301

    申请日:2019-03-20

    Abstract: In a method for the recognition of an object by means of a radar sensor system, a primary radar signal is transmitted into an observation space, a secondary radar signal reflected by the object is received, a Micro-Doppler spectrogram of the secondary radar signal is generated, and at least one periodicity quantity relating to an at least essentially periodic motion of a part of the object is determined based on the Micro-Doppler spectrogram. The determining of the at least one periodicity quantity includes the following steps: (i) determining the course of at least one periodic signal component corresponding to an at least essentially periodic pattern of the Micro-Doppler spectrogram, (ii) fitting a smoothed curve to the periodic signal component, (iii) determining the positions of a plurality of peaks and/or valleys of the smoothed curve, and (iv) determining the periodicity quantity based on the determined positions of peaks and/or valleys.

    METHOD FOR THE RECOGNITION OF AN OBJECT
    9.
    发明申请

    公开(公告)号:US20190310362A1

    公开(公告)日:2019-10-10

    申请号:US16359301

    申请日:2019-03-20

    Abstract: In a method for the recognition of an object by means of a radar sensor system, a primary radar signal is transmitted into an observation space, a secondary radar signal reflected by the object is received, a Micro-Doppler spectrogram of the secondary radar signal is generated, and at least one periodicity quantity relating to an at least essentially periodic motion of a part of the object is determined based on the Micro-Doppler spectrogram. The determining of the at least one periodicity quantity includes the following steps: (i) determining the course of at least one periodic signal component corresponding to an at least essentially periodic pattern of the Micro-Doppler spectrogram, (ii) fitting a smoothed curve to the periodic signal component, (iii) determining the positions of a plurality of peaks and/or valleys of the smoothed curve, and (iv) determining the periodicity quantity based on the determined positions of peaks and/or valleys.

Patent Agency Ranking