摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
Transmit amplitude independent adaptive equalizers are provided that compensate for transmission losses in an input signal when the transmit signal amplitude is unknown. Several embodiments are provided, including a first embodiment having an equalizer core, a controllable-swing slicer and an amplitude control loop, a second embodiment having an equalizer core, a fixed-swing slicer and a control loop, a third embodiment having an equalizer core, a variable gain amplifier, and a variable gain amplifier control loop, and a fourth embodiment having an equalizer core, a fixed-swing slicer, a variable gain amplifier, and a variable gain amplifier control loop.
摘要:
An adaptive equalizer with a large data rate range is provided. The equalizer comprises an equalizer core, a slicer and an automatic gain control (AGC) loop. The equalizer core is coupled to an input signal from a transmission medium and applies a transfer function to the input signal to compensate for losses incurred in the transmission medium in order to generate a core output signal. The equalizer core is also coupled to a bandwidth control signal that controls a bandwidth of the transfer function. The slicer is coupled to the core output signal and converts the core output signal to a digital output signal having a fixed digital output swing that approximates a transmission swing of the input signal prior to transmission over the transmission medium. The AGC loop is coupled to the core output signal and the digital output signal and compares the core output signal with the digital output signal in order to generate the bandwidth control signal.
摘要:
A delay locked loop includes a triangle wave generator circuit coupled to a serial clock signal for generating a triangular wave signal. A phase interpolator coupled to the triangular wave signal and a weighting signal generates an interpolated clock phase signal, and a phase detector receives serial data and the interpolated clock phase signal and generates a retimed serial data signal.
摘要:
In accordance with the teachings described herein, a digital video cable driver is provided that includes an input stage, an output stage and an amplification stage. The input stage converts a pair of differential input voltages into a control current. The output stage generates a digital output voltage for transmission over a cable. The amplification stage responds to the control current to control a voltage swing of the digital output voltage as a function of the control current. The amplification stage may include a transistor circuit that varies the digital output voltage in proportion to variations in the control current to cause the voltage swing, wherein the control current causes one or more transistors in the transistor circuit to remain in a saturated state during operation of the digital video cable driver.