Abstract:
Embodiments for a computer readable medium including a software module are provided. The software module causes one or more processing devices to obtain a biometric identifier from a user. Access to a resource is requested by providing a software credential token and the biometric identifier. The software credential token corresponds to a hardware credential token, and the hardware credential token is one of a set of hardware credential tokens that are used to access the resource. An indication that access to the resource has been granted is received and after receiving the indication an indication that the access to the resource has been revoked is received. After receiving the indication that access to the resource has been revoked, a biometric identifier is re-obtained from a user and access to the resource is re-requested by providing a software credential token and the re-obtained biometric identifier.
Abstract:
This disclosure is directed to network optimization in a complex joint network for increasing the network utility of the complex joint network. A computing device in the complex joint network may receive a data flow via a complex joint network. The computing device may determine, based on a network template, a mission utility associated with the data flow and a traffic class associated with the data flow. The computing device may control one or more quality of service decisions based at least in part on the mission utility associated with the data flow and the traffic class associated with the data flow.
Abstract:
This disclosure describes a context aware scalable dynamic network whereby network information concerning network elements in an untrusted (Black) network are gathered by network sensors, stored at a network sensor collector, and sent to another network sensor collector in a trusted (Red) network through a one-way guard. At the Red network, the network information from the Black network may be combined with network information from one or more Red networks. The combined network information may then be used to visualize a cross-domain network topology of both Red and Black networks, and to implement network management functions.
Abstract:
Embodiments for a computer readable medium including a software module are provided. The software module causes one or more processing devices to obtain a biometric identifier from a user. Access to a resource is requested by providing a software credential token and the biometric identifier. The software credential token corresponds to a hardware credential token, and the hardware credential token is one of a set of hardware credential tokens that are used to access the resource. An indication that access to the resource has been granted is received and after receiving the indication an indication that the access to the resource has been revoked is received. After receiving the indication that access to the resource has been revoked, a biometric identifier is re-obtained from a user and access to the resource is re-requested by providing a software credential token and the re-obtained biometric identifier.
Abstract:
This disclosure describes a context aware scalable dynamic network whereby network information concerning network elements in an untrusted (Black) network are gathered by network sensors, stored at a network sensor collector, and sent to another network sensor collector in a trusted (Red) network through a one-way guard. At the Red network, the network information from the Black network may be combined with network information from one or more Red networks. The combined network information may then be used to visualize a cross-domain network topology of both Red and Black networks, and to implement network management functions.
Abstract:
This disclosure is directed to network optimization in a complex joint network for increasing the network utility of the complex joint network. A computing device in the complex joint network may receive a data flow via a complex joint network. The computing device may determine, based on a network template, a mission utility associated with the data flow and a traffic class associated with the data flow. The computing device may control one or more quality of service decisions based at least in part on the mission utility associated with the data flow and the traffic class associated with the data flow.
Abstract:
This disclosure describes a context aware scalable dynamic network whereby network information concerning network elements in an untrusted (Black) network are gathered by network sensors, stored at a network sensor collector, and sent to another network sensor collector in a trusted (Red) network through a one-way guard. At the Red network, the network information from the Black network may be combined with network information from one or more Red networks. The combined network information may then be used to visualize a cross-domain network topology of both Red and Black networks, and to implement network management functions.
Abstract:
This disclosure is directed to techniques for providing communication between devices in different networks wherein the communication must first pass through an encryption mechanism and the devices do not have the stand-alone capability to encrypt or decrypt the communication. According to these techniques, an adapter may determine certain fields in a data packet that remain unencrypted when the data packet passes through the encryption mechanism. The adapter may then process those fields in such a way that, when the data packets are received by a second adapter, the second adapter may read those fields and obtain information.
Abstract:
This disclosure is directed to network optimization in a complex joint network for increasing the network utility of the complex joint network. A computing device in the complex joint network may receive a data flow via a complex joint network. The computing device may determine, based on a network template, a mission utility associated with the data flow and a traffic class associated with the data flow. The computing device may control one or more quality of service decisions based at least in part on the mission utility associated with the data flow and the traffic class associated with the data flow.
Abstract:
Embodiments for a computer readable medium including a software module are provided. The software module causes one or more processing devices to obtain a biometric identifier from a user. Access to a resource is requested by providing a software credential token and the biometric identifier. The software credential token corresponds to a hardware credential token, and the hardware credential token is one of a set of hardware credential tokens that are used to access the resource. An indication that access to the resource has been granted is received and after receiving the indication an indication that the access to the resource has been revoked is received. After receiving the indication that access to the resource has been revoked, a biometric identifier is re-obtained from a user and access to the resource is re-requested by providing a software credential token and the re-obtained biometric identifier.