Abstract:
The invention relates to polymer blends comprised of a fluoropolymer and functional acrylic copolymer. The fluoropolymer is majority in the blend, accounting for 80 wt % or higher. The fluoropolymer can be polyvinylidene fluoride (PVDF) and its copolymers. VDF copolymer can contain fluorinated comonomers such as hexafluoropropylene (HFP), tetrafluoroethylene (TFE) etc, or functionalized monomers such as vinyl carboxy lic acid, phosphoric, sulfonic acid and their salts. The functional acrylic copolymers are poly (methyl) methacrylate copolymers with functional containing monomers.
Abstract:
Disclosed is a vinylidene fluoride (co)polymer having a beta phase intensity ratio of greater than 5 and the polymerization process for making the vinylidene fluoride based polymer or copolymer.
Abstract:
The invention relates to a separator for non-aqueous-type electrochemical devices that has been coated with a polymer binder composition having polymer particles of two different sizes, one fraction of the polymer particles with a weight average particle size of less than 1.5 micron, and the other fraction of the polymer particles with a weight average particle size of greater than 1.5 microns. The bi-modal polymer particles provide an uneven coating surface that creates voids between the separator and adjoining electrodes, allowing for expansion of the battery components during the charging and discharging cycle, with little or no increase in the size of the battery itself. The bi-modal polymer coating can be used in non-aqueous-type electrochemical devices, such as batteries and electric double layer capacitors.
Abstract:
The invention relates to fluoropolymers that have been modified with low molecular weight, polymeric chain transfer agents, and uses of the modified fluoropolymers. The modified fluoropolymers provide enhanced properties to the fluoropolymer, such as increased adhesion, and hydrophilic characteristics. The modified functional fluoropolymers are useful in many applications, including as binders in electrode-forming compositions and separator compositions, for hydrophilic membranes and hollow fiber membranes, as an aqueous and a solvent cast coating for baked decorative and protective coatings, and as a tie layer between a fluoropolymer layer and an incompatible polymer layer.
Abstract:
The invention relates to an electrode formed by the blending of dry active powdery electrode forming materials with an aqueous binder dispersion, and the subsequent adhering of the wet binder/dry active powdery electrode-forming materials blend to an electroconductive substrate, resulting in an electrode. The aqueous binder is preferably a fluoropolymer, and more preferably polyvinylidene fluoride (PVDF). The hybrid process provides the good dispersion and small particle size of a wet process, with the energy savings and reduced environmental impact of a dry process. The resulting electrode is useful in energy-storage devices.
Abstract:
The invention relates to integrated electrode separators (IES), and their use in lithium ion batteries as replacements for free standing separators. The IES results from coating an electrode with a fluoropolymer aqueous-based emulsion or suspension, and drying the coating to produce a tough, porous separator layer on the electrodes. The aqueous fluoropolymer coating may optionally contain dispersed inorganic particles and other additives to improve electrode performance such as higher ionic conduction or higher temperature use. The IES provides several advantages, including a thinner, more uniform separator layer, and the elimination of a separate battery component (separator membrane) for a simpler and cost-saving manufacturing process. The aqueous separator coating can be used in combination with a solvent cast electrode as well as an aqueous cast electrode either in two separate process steps, or in a one-step process.