摘要:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
摘要:
Systems and methodologies are described that facilitate efficiently communicating a data packet related to a protocol layer within a wireless communication system. The systems and/or methods can provide cross-layer optimization by directly transporting or communicating data to a particular protocol layer. In general, a MAC header can include data that indicates a protocol layer to which such data is directed or targeted. The MAC header can allow a portion of data (e.g., PDUs, SDUs, etc.) to bypass at least one protocol layer above the MAC protocol layer for efficient and optimized processing of such data.
摘要:
Systems and methods are provided for a learning-based determination of semi-persistent scheduling of data-packet flow wireless communication. A packetized data flow served to a wireless terminal is fully scheduled for an initial period of time in order to collect statistics associated with scheduled packet sizes (Ss) and inter-packet times (Ts). Analysis of a cumulative distribution of {S, T} pairs indicate whether a characteristic packet size (S0) and size dispersion (D0) are associated with the cumulative distribution. Inter-time intervals associated with the characteristic size and dispersion complete a transport format. Semi-persistent scheduling is utilized for a packetized flow when a characteristic transport format can be extracted, or learned, from the accumulated statistics. Extracted transport formats can be employed to optimize scheduling efficiency upon handover.
摘要:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
摘要:
A data packet communication system employs radio link control (RLC) transmission between a transmitter and a receiver with an Automatic Repeat Request (ARQ) arrangement whereby polling of the receiver is accomplished with reduced amount of redundantly transmitted data, such as between an access node and terminal. Upon a polling event, such as emptying of a transmission buffer of the transmitter, expiration of a polling timer, or reaching a radio link control (RLC) protocol data units (PDUs) count threshold, the transmitter sends a polling command to the receiver. This polling command is smaller than any of the RLC PDUs, which are conventionally resent with a polling bit set to evoke a STATUS PDU from the receiver. With evolving communication standards tending toward larger PDUs, such as in excess of a kilobyte for HSPA+ (High-Speed Packet Access Evolution) and 3GPP LTE (Long Term Evolution), this inefficiency can be of increasing impact.
摘要:
Systems and methodologies are described that facilitate efficiently communicating a data packet related to a protocol layer within a wireless communication system. The systems and/or methods can provide cross-layer optimization by directly transporting or communicating data to a particular protocol layer. In general, a MAC header can include data that indicates a protocol layer to which such data is directed or targeted. The MAC header can allow a portion of data (e.g., PDUs, SDUs, etc.) to bypass at least one protocol layer above the MAC protocol layer for efficient and optimized processing of such data.
摘要:
A data packet communication system employs data encryption in a packet data convergence protocol (PDCP) and radio link control (RLC) in Layer 2 of transmission between a transmitter (TX) and a receiver (RX). A single sequence number is used for both the PDCP and RLC to reduce overhead by signaling a TX PDCP first ciphering sequence number to the RX prior to encrypted data packet communication. A sequence number accompanies each RLC PDU, which can encompass concatenated or segmented service data units (SDUs) from the higher layer PDCP. This sequence number is sufficient for the RLC to perform re-ordering, gap detection, retransmission, etc., while also allowing the RX upper layer PDCP to reconstruct a sequenced value used to encrypt content.
摘要:
A data packet communication system employs radio link control (RLC) transmission between a transmitter and a receiver with an Automatic Repeat Request (ARQ) arrangement whereby polling of the receiver is accomplished with reduced amount of redundantly transmitted data, such as between an access node and terminal. Upon a polling event, such as emptying of a transmission buffer of the transmitter, expiration of a polling timer, or reaching a radio link control (RLC) protocol data units (PDUs) count threshold, the transmitter sends a polling command to the receiver. This polling command is smaller than any of the RLC PDUs, which are conventionally resent with a polling bit set to evoke a STATUS PDU from the receiver. With evolving communication standards tending toward larger PDUs, such as in excess of a kilobyte for HSPA+ (High-Speed Packet Access Evolution) and 3GPP LTE (Long Term Evolution), this inefficiency can be of increasing impact.
摘要:
A data packet communication system employs data encryption in a packet data convergence protocol (PDCP) and radio link control (RLC) in Layer 2 of transmission between a transmitter (TX) and a receiver (RX). A single sequence number is used for both the PDCP and RLC to reduce overhead by signaling a TX PDCP first ciphering sequence number to the RX prior to encrypted data packet communication. A sequence number accompanies each RLC PDU, which can encompass concatenated or segmented service data units (SDUs) from the higher layer PDCP. This sequence number is sufficient for the RLC to perform re-ordering, gap detection, retransmission, etc., while also allowing the RX upper layer PDCP to reconstruct a sequenced value used to encrypt content.
摘要:
Systems and methods are provided for a learning-based determination of semi-persistent scheduling of data-packet flow wireless communication. A packetized data flow served to a wireless terminal is fully scheduled for an initial period of time in order to collect statistics associated with scheduled packet sizes (Ss) and inter-packet times (Ts). Analysis of a cumulative distribution of {S, T} pairs indicate whether a characteristic packet size (S0) and size dispersion (D0) are associated with the cumulative distribution. Inter-time intervals associated with the characteristic size and dispersion complete a transport format. Semi-persistent scheduling is utilized for a packetized flow when a characteristic transport format can be extracted, or learned, from the accumulated statistics. Extracted transport formats can be employed to optimize scheduling efficiency upon handover.