Generating applications that analyze image data using a semantic cognition network
    1.
    发明申请
    Generating applications that analyze image data using a semantic cognition network 有权
    生成使用语义认知网络分析图像数据的应用程序

    公开(公告)号:US20070036440A1

    公开(公告)日:2007-02-15

    申请号:US11582225

    申请日:2006-10-17

    IPC分类号: G06K9/62 G06F17/30

    摘要: A method is disclosed for generating an application that analyzes image data, such as from satellite and microscope pictures. The method uses a graphical user interface to add a new processing object to a processing object network. The processing object network includes a parent processing object and a child processing object. A user can append a new processing object to the child processing object or can add the new processing object as a subprocess to the parent processing object. The user selects a data domain and an algorithm from selection lists on the graphical user interface and adds them to the new processing object. The application uses a semantic cognition network to process data objects that are generated by segmenting the image data. The application then uses the new processing object to identify portions of the image that are to be highlighted on the graphical user interface.

    摘要翻译: 公开了一种用于生成分析图像数据的应用的方法,例如从卫星和显微镜图像。 该方法使用图形用户界面将新的处理对象添加到处理对象网络。 处理对象网络包括父处理对象和子处理对象。 用户可以将新的处理对象附加到子处理对象,或者可以将新处理对象作为子处理添加到父处理对象。 用户从图形用户界面的选择列表中选择数据域和算法,并将其添加到新的处理对象。 应用程序使用语义认知网络来处理通过分割图像数据生成的数据对象。 应用程序然后使用新的处理对象来识别图形用户界面上要突出显示的图像的部分。

    Generating applications that analyze image data using a semantic cognition network
    2.
    发明授权
    Generating applications that analyze image data using a semantic cognition network 有权
    生成使用语义认知网络分析图像数据的应用程序

    公开(公告)号:US07467159B2

    公开(公告)日:2008-12-16

    申请号:US11582225

    申请日:2006-10-17

    IPC分类号: G06F17/30

    摘要: A method is disclosed for generating an application that analyzes image data, such as from satellite and microscope pictures. The method uses a graphical user interface to add a new processing object to a processing object network. The processing object network includes a parent processing object and a child processing object. A user can append a new processing object to the child processing object or can add the new processing object as a subprocess to the parent processing object. The user selects a data domain and an algorithm from selection lists on the graphical user interface and adds them to the new processing object. The application uses a semantic cognition network to process data objects that are generated by segmenting the image data. The application then uses the new processing object to identify portions of the image that are to be highlighted on the graphical user interface.

    摘要翻译: 公开了一种用于生成分析图像数据的应用的方法,例如从卫星和显微镜图像。 该方法使用图形用户界面将新的处理对象添加到处理对象网络。 处理对象网络包括父处理对象和子处理对象。 用户可以将新的处理对象附加到子处理对象,或者可以将新处理对象作为子处理添加到父处理对象。 用户从图形用户界面的选择列表中选择数据域和算法,并将其添加到新的处理对象。 应用程序使用语义认知网络来处理通过分割图像数据生成的数据对象。 应用程序然后使用新的处理对象来识别图形用户界面上要突出显示的图像的部分。

    Extracting information from input data using a semantic cognition network
    3.
    发明授权
    Extracting information from input data using a semantic cognition network 有权
    使用语义认知网络从输入数据中提取信息

    公开(公告)号:US07146380B2

    公开(公告)日:2006-12-05

    申请号:US10687477

    申请日:2003-10-15

    IPC分类号: G06F17/30

    摘要: A method is disclosed for extracting information from input data comprising mapping of the input data into a data object network. The method uses a semantic cognition network comprised of the data object network, a class object network and a processing object network. The semantic cognition network uses a set of algorithms to process the semantic units. The semantic cognition network defines a processing object in the processing object network by selecting a data domain in the data object network, a class domain in the class object network and an algorithm from the set of algorithms. The processing object comprises the data domain, the class domain and the algorithm. The processing object is used in the processing object network to process the semantic units.

    摘要翻译: 公开了一种用于从输入数据中提取信息的方法,包括将输入数据映射到数据对象网络中。 该方法使用由数据对象网络,类对象网络和处理对象网络组成的语义认知网络。 语义认知网络使用一组算法来处理语义单元。 语义认知网络通过选择数据对象网络中的数据域,类对象网络中的类域和算法集合中的算法来定义处理对象网络中的处理对象。 处理对象包括数据域,类域和算法。 处理对象在处理对象网络中用于处理语义单元。

    Graphical user interface for interpreting the results of image analysis
    4.
    发明授权
    Graphical user interface for interpreting the results of image analysis 有权
    用于解释图像分析结果的图形用户界面

    公开(公告)号:US08711149B2

    公开(公告)日:2014-04-29

    申请号:US13313685

    申请日:2011-12-07

    IPC分类号: G06T11/20

    摘要: A method of intuitively displaying values obtained from analyzing bio-medical images includes displaying a table of the values in a first pane of a graphical user interface. The table contains a user selectable row that includes a reference value and two numerical values. The reference value refers to an image of a tissue slice. The first numerical value is generated by performing image analysis on the image, and the second numerical value indicates a health state of the tissue. The image is displayed in a second pane of the graphical user interface in response to the user selecting the user selectable row. A graphical plot with a selectable symbol associated with the image is displayed in a third pane. The symbol has a position in the plot defined by the values. Alternatively, in response to the user selecting the selectable symbol, the image is displayed in the second pane.

    摘要翻译: 直观地显示从分析生物医学图像获得的值的方法包括在图形用户界面的第一窗格中显示值的表格。 该表包含用户可选行,其中包含一个参考值和两个数值。 参考值是指组织切片的图像。 通过对图像进行图像分析来生成第一数值,第二数值表示组织的健康状态。 响应于用户选择用户可选行,图像显示在图形用户界面的第二窗格中。 具有与图像相关联的可选符号的图形显示在第三窗格中。 符号在由值定义的图中具有位置。 或者,响应于用户选择可选择符号,在第二窗格中显示图像。

    Analyzing pixel data by imprinting objects of a computer-implemented network structure into other objects
    5.
    发明申请
    Analyzing pixel data by imprinting objects of a computer-implemented network structure into other objects 有权
    通过将计算机实现的网络结构的对象压印到其他对象中来分析像素数据

    公开(公告)号:US20100265267A1

    公开(公告)日:2010-10-21

    申请号:US12386380

    申请日:2009-04-17

    摘要: An analysis system analyzes digital images using a computer-implemented network structure that includes a process hierarchy, a class network and a data network. The data network includes image layers and object networks. Objects in a first object network are segmented into a first class, and objects in a second object network are segmented into a second class. One process step of the process hierarchy involves generating a third object network by imprinting objects of the first object network into the objects of the second object network such that pixel locations are unlinked from objects of the second object network to the extent that the pixel locations were also linked to objects of the first object network. The imprinting step allows object-oriented processing of digital images to be performed with fewer computations and less memory. Characteristics of an object of the third object network are then determined by measuring the object.

    摘要翻译: 分析系统使用包括过程层次,类网络和数据网络的计算机实现的网络结构来分析数字图像。 数据网络包括图像层和对象网络。 第一对象网络中的对象被分割成第一类,并且第二对象网络中的对象被分割成第二类。 过程层级的一个过程步骤包括通过将第一对象网络的对象压印到第二对象网络的对象中来生成第三对象网络,使得像素位置与第二对象网络的对象脱离到像素位置是 也链接到第一对象网络的对象。 压印步骤允许以更少的计算和更少的存储器执行数字图像的面向对象处理。 然后通过测量对象来确定第三对象网络的对象的​​特征。

    Context driven image mining to generate image-based biomarkers
    6.
    发明申请
    Context driven image mining to generate image-based biomarkers 有权
    上下文驱动的图像挖掘生成基于图像的生物标志物

    公开(公告)号:US20110122138A1

    公开(公告)日:2011-05-26

    申请号:US12930873

    申请日:2011-01-18

    IPC分类号: G06T11/20 G06K9/00

    摘要: An image-based biomarker is generated using image features obtained through object-oriented image analysis of medical images. The values of a first subset of image features are measured and weighted. The weighted values of the image features are summed to calculate the magnitude of a first image-based biomarker. The magnitude of the biomarker for each patient is correlated with a clinical endpoint, such as a survival time, that was observed for the patient whose medical images were analyzed. The correlation is displayed on a graphical user interface as a scatter plot. A second subset of image features is selected that belong to a second image-based biomarker such that the magnitudes of the second image-based biomarker for the patients better correlate with the clinical endpoints observed for those patients. The second biomarker can then be used to predict the clinical endpoint of other patients whose clinical endpoints have not yet been observed.

    摘要翻译: 使用通过医学图像的面向对象图像分析获得的图像特征来生成基于图像的生物标志物。 测量和加权图像特征的第一子集的值。 将图像特征的加权值相加以计算第一基于图像的生物标志物的大小。 每个患者的生物标志物的大小与对其医学图像分析的患者观察到的临床终点相关,例如存活时间。 相关性作为散点图显示在图形用户界面上。 选择属于第二基于图像的生物标志物的图像特征的第二子集,使得用于患者的第二基于图像的生物标志物的量级与对于那些患者观察到的临床终点更为相关。 然后可以将第二种生物标志物用于预测尚未观察到其临床终点的其他患者的临床终点。

    Analyzing pixel data by imprinting objects of a computer-implemented network structure into other objects
    7.
    发明授权
    Analyzing pixel data by imprinting objects of a computer-implemented network structure into other objects 有权
    通过将计算机实现的网络结构的对象压印到其他对象中来分析像素数据

    公开(公告)号:US08319793B2

    公开(公告)日:2012-11-27

    申请号:US12386380

    申请日:2009-04-17

    IPC分类号: G09G5/14

    摘要: An analysis system analyzes digital images using a computer-implemented network structure that includes a process hierarchy, a class network and a data network. The data network includes image layers and object networks. Objects in a first object network are segmented into a first class, and objects in a second object network are segmented into a second class. One process step of the process hierarchy involves generating a third object network by imprinting objects of the first object network into the objects of the second object network such that pixel locations are unlinked from objects of the second object network to the extent that the pixel locations were also linked to objects of the first object network. The imprinting step allows object-oriented processing of digital images to be performed with fewer computations and less memory. Characteristics of an object of the third object network are then determined by measuring the object.

    摘要翻译: 分析系统使用包括过程层次,类网络和数据网络的计算机实现的网络结构来分析数字图像。 数据网络包括图像层和对象网络。 第一对象网络中的对象被分割成第一类,并且第二对象网络中的对象被分割成第二类。 过程层级的一个过程步骤包括通过将第一对象网络的对象压印到第二对象网络的对象中来生成第三对象网络,使得像素位置与第二对象网络的对象脱离到像素位置是 也链接到第一对象网络的对象。 压印步骤允许以更少的计算和更少的存储器执行数字图像的面向对象处理。 然后通过测量对象来确定第三对象网络的对象的​​特征。

    Graphical User Interface For Interpreting The Results Of Image Analysis
    8.
    发明申请
    Graphical User Interface For Interpreting The Results Of Image Analysis 有权
    用于解释图像分析结果的图形用户界面

    公开(公告)号:US20120147010A1

    公开(公告)日:2012-06-14

    申请号:US13313685

    申请日:2011-12-07

    IPC分类号: G06T11/20 G06F3/048

    摘要: A method of intuitively displaying values obtained from analyzing bio-medical images includes displaying a table of the values in a first pane of a graphical user interface. The table contains a user selectable row that includes a reference value and two numerical values. The reference value refers to an image of a tissue slice. The first numerical value is generated by performing image analysis on the image, and the second numerical value indicates a health state of the tissue. The image is displayed in a second pane of the graphical user interface in response to the user selecting the user selectable row. A graphical plot with a selectable symbol associated with the image is displayed in a third pane. The symbol has a position in the plot defined by the values. Alternatively, in response to the user selecting the selectable symbol, the image is displayed in the second pane.

    摘要翻译: 直观地显示从分析生物医学图像获得的值的方法包括在图形用户界面的第一窗格中显示值的表格。 该表包含用户可选行,其中包含一个参考值和两个数值。 参考值是指组织切片的图像。 通过对图像进行图像分析来生成第一数值,第二数值表示组织的健康状态。 响应于用户选择用户可选行,图像显示在图形用户界面的第二窗格中。 具有与图像相关联的可选符号的图形显示在第三窗格中。 符号在由值定义的图中具有位置。 或者,响应于用户选择可选择符号,在第二窗格中显示图像。

    Context driven image mining to generate image-based biomarkers
    9.
    发明授权
    Context driven image mining to generate image-based biomarkers 有权
    上下文驱动的图像挖掘生成基于图像的生物标志物

    公开(公告)号:US08594410B2

    公开(公告)日:2013-11-26

    申请号:US12930873

    申请日:2011-01-18

    IPC分类号: G06K9/00 G06K9/62

    摘要: An image-based biomarker is generated using image features obtained through object-oriented image analysis of medical images. The values of a first subset of image features are measured and weighted. The weighted values of the image features are summed to calculate the magnitude of a first image-based biomarker. The magnitude of the biomarker for each patient is correlated with a clinical endpoint, such as a survival time, that was observed for the patient whose medical images were analyzed. The correlation is displayed on a graphical user interface as a scatter plot. A second subset of image features is selected that belong to a second image-based biomarker such that the magnitudes of the second image-based biomarker for the patients better correlate with the clinical endpoints observed for those patients. The second biomarker can then be used to predict the clinical endpoint of other patients whose clinical endpoints have not yet been observed.

    摘要翻译: 使用通过医学图像的面向对象图像分析获得的图像特征来生成基于图像的生物标志物。 测量和加权图像特征的第一子集的值。 将图像特征的加权值相加以计算第一基于图像的生物标志物的大小。 每个患者的生物标志物的大小与对其医学图像分析的患者观察到的临床终点相关,例如存活时间。 相关性作为散点图显示在图形用户界面上。 选择属于第二基于图像的生物标志物的图像特征的第二子集,使得用于患者的第二基于图像的生物标志物的量级与对于那些患者观察到的临床终点更为相关。 然后可以将第二种生物标志物用于预测尚未观察到其临床终点的其他患者的临床终点。

    Clinical Decision Support System
    10.
    发明申请
    Clinical Decision Support System 审中-公开
    临床决策支持系统

    公开(公告)号:US20120232930A1

    公开(公告)日:2012-09-13

    申请号:US13417268

    申请日:2012-03-11

    IPC分类号: G06Q50/24

    摘要: A clinical decision support system performs a similarity search to determine the probable outcome of applying on a current patient those clinical actions that were performed on similar patients. The system analyzes stored electronic health records of similar patients so as to recommend diagnostic and therapeutic steps for the current patient. The system receives the health record of the patient, determines which clinical actions were already applied on the patient, generates classifiers associated with potential future clinical actions, generates a success value for each health record of another patient using the classifiers, displays the health record of the other patient having the greatest success value, and indicates a proposed clinical action that is to be applied on the patient. The system also calculates a quality value indicating the probability that a sequence of clinical actions that were applied to a similar patient will be successful if applied to the patient.

    摘要翻译: 临床决策支持系统执行相似性搜索以确定对当前患者应用对类似患者进行的临床行为的可能结果。 系统分析类似患者的存储电子健康记录,以便为当前患者推荐诊断和治疗步骤。 该系统接收患者的健康记录,确定哪些临床动作已经应用于患者,产生与潜在的未来临床行为相关联的分类器,使用分类器为另一患者的每个健康记录生成成功值,显示健康记录 其他患者具有最大的成功价值,并且指示将应用于患者的临床行动。 该系统还计算质量值,该质量值指示应用于类似患者的临床行为序列如果应用于患者则成功的概率。