摘要:
An image-based biomarker is generated using image features obtained through object-oriented image analysis of medical images. The values of a first subset of image features are measured and weighted. The weighted values of the image features are summed to calculate the magnitude of a first image-based biomarker. The magnitude of the biomarker for each patient is correlated with a clinical endpoint, such as a survival time, that was observed for the patient whose medical images were analyzed. The correlation is displayed on a graphical user interface as a scatter plot. A second subset of image features is selected that belong to a second image-based biomarker such that the magnitudes of the second image-based biomarker for the patients better correlate with the clinical endpoints observed for those patients. The second biomarker can then be used to predict the clinical endpoint of other patients whose clinical endpoints have not yet been observed.
摘要:
An image-based biomarker is generated using image features obtained through object-oriented image analysis of medical images. The values of a first subset of image features are measured and weighted. The weighted values of the image features are summed to calculate the magnitude of a first image-based biomarker. The magnitude of the biomarker for each patient is correlated with a clinical endpoint, such as a survival time, that was observed for the patient whose medical images were analyzed. The correlation is displayed on a graphical user interface as a scatter plot. A second subset of image features is selected that belong to a second image-based biomarker such that the magnitudes of the second image-based biomarker for the patients better correlate with the clinical endpoints observed for those patients. The second biomarker can then be used to predict the clinical endpoint of other patients whose clinical endpoints have not yet been observed.
摘要:
A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
摘要:
High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.
摘要:
A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
摘要:
A method for generating an image-based test improves diagnostic accuracy by iteratively modifying rule sets governing image and data analysis of coregistered image tiles. Digital images of stained tissue slices are divided into tiles, and tiles from different images are coregistered. First image objects are linked to selected pixels of the tiles. First numerical data is generated by measuring the first objects. Each pixel of a heat map aggregates first numerical data from coregistered tiles. Second objects are linked to selected pixels of the heat map. Measuring the second objects generates second numerical data. The method improves how well second numerical data correlates with clinical data of the patient whose tissue is analyzed by modifying the rule sets used to generate the first and second objects and the first and second numerical data. The test is defined by those rule sets that produce the best correlation with the clinical data.
摘要:
A method for generating an image-based test improves diagnostic accuracy by iteratively modifying rule sets governing image and data analysis of coregistered image tiles. Digital images of stained tissue slices are divided into tiles, and tiles from different images are coregistered. First image objects are linked to selected pixels of the tiles. First numerical data is generated by measuring the first objects. Each pixel of a heat map aggregates first numerical data from coregistered tiles. Second objects are linked to selected pixels of the heat map. Measuring the second objects generates second numerical data. The method improves how well second numerical data correlates with clinical data of the patient whose tissue is analyzed by modifying the rule sets used to generate the first and second objects and the first and second numerical data. The test is defined by those rule sets that produce the best correlation with the clinical data.
摘要:
High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.